Original Papers

Assessment of groundwater influenced by seawater using geochemical modeling and statistical analysis: Basrah Province, Iraq

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 23 December 2025
182
Views
81
Downloads

Authors

Seawater intrusion in coastal aquifers is a complicated phenomenon that requires a practical framework to assess the constituents’ groundwater source. The current paper focuses on the processes influencing coastal groundwater in the southeastern region of Basrah, southern Iraq. Thirteen groundwater samples were subjected to comprehensive hydrogeochemical treatments, including hydrogeochemical analysis with Piper, Schoeller, and Gibbs plots, geochemical modeling, and statistical analysis supported by hierarchical cluster analysis. The results of the Piper plot indicated that the analyzed groundwater is characterized as Na-Cl (77%) and Ca-Mg-Cl (23%) and belongs to the order of Cl–>Na+>SO42–>Ca2+>Mg2+>HCO3 as identified by Schoeller results. Gibbs’ plot results indicated the processes of evaporation and seawater dominance. Saturation indices of minerals in groundwater revealed a slight supersaturation (SI>0) with calcite and dolomite, suggesting limited precipitation of carbonate minerals. In contrast, gypsum and anhydrite showed a slight undersaturation (SI<0), indicating minimal dissolution of evaporite minerals, while halite and sylvite minerals suggested a strong undersaturation (SI<0), reflecting that dissolution of salts is a common process in the coastal areas. Furthermore, cluster analysis demonstrated that the ionic content of groundwater was significantly affected by seawater, evaporation processes, and minimal sedimentation of carbonate minerals. These techniques are recommended for controlling the groundwater extraction within the study area.

Downloads

Download data is not yet available.

Citations

Abdalla, F. (2016). Ionic ratios as tracers to assess seawater intrusion and to identify salinity sources in Jazan coastal aquifer, Saudi Arabia. Arabian Journal of Geosciences, 9(1), 1-12. https://doi.org/10.1007/s12517-015-2065-3 DOI: https://doi.org/10.1007/s12517-015-2065-3
Abdulameer, A., Thabit, J. M., AL-Menshed, F. H., & Merkel, B. (2018). Investigation of seawater intrusion in the Dibdibba Aquifer using 2D resistivity imaging in the area between Al-Zubair and Umm Qasr, southern Iraq. Environmental Earth Sciences, 77, 1-15. https://doi.org/10.1007/s12665-018-7798-3. DOI: https://doi.org/10.1007/s12665-018-7798-3
Abdulameer, A., Thabit, J. M., Kanoua, W., Wiche, O., & Merkel, B. (2021). Possible sources of salinity in the upper Dibdibba aquifer, Basrah, Iraq. Water, 13(4), 578. https://doi.org/10.3390/w13040578. DOI: https://doi.org/10.3390/w13040578
Al Naqib, K. M. (1967). Geology of the Arabian Peninsula:. United States Department of the Interior, Geological Survey. https://doi.org/10.3133/pp560G. DOI: https://doi.org/10.3133/pp560G
Aladejana, J. A., Kalin, R. M., Sentenac, P., & Hassan, I. (2021). Groundwater quality index as a hydrochemical tool for monitoring saltwater intrusion into coastal freshwater aquifer of Eastern Dahomey Basin, Southwestern Nigeria. Groundwater for Sustainable Development, 13, 100568. https://doi.org/10.1016/j.gsd.2021.100568. DOI: https://doi.org/10.1016/j.gsd.2021.100568
Alfarrah, N., & Walraevens, K. (2018). Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water, 10(2), 143. https://doi.org/10.3390/w10020143. DOI: https://doi.org/10.3390/w10020143
Al-Jawad, S. B., Ayob, M. S., Khalil, S., & Al-Radi, N. H. (1989). Hydraulic properties of Dibdibba sandstone using pumping tests data in large diameter wells. In Proc. 5th, Sci., Conf., SRC., Iraq (Vol. 3, No. 3, pp. 133-146).
Al-Jiburi, H. K., & Al-Basrawi, N. H. (2009). Hydrogeology. IRAQI BULLETIN OF GEOLOGY AND MINING, (2), 77-91.
Al-Kubaisi, Q. Y. (1996). Hydrogeology of Dibdiba Aquifer in Safwan– Zubair area, South Iraq. Unpublished Ph. D. Thesis, University of Baghdad, Baghdad.
Al-Kubaisi, Q. Y. (1999). Quaternary-Tertiary hydrogeologic boundary condition at Safwan-Zubair area. South of Iraq. Iraq Jour Sci, 40(3), 21-28.
Al-Mallah, I. A., Al-Qurnawi, W. S., Ghalib, H. B., Al Hawash, A. B., & Abdulameer, M. H. (2022). Evaluation of groundwater quality in the Dibdibba aquifer using hydrogeochemical and isotope techniques (Basrah Province, Iraq). Acta Geochimica, 41(5), 823-838. https://doi.org/10.1007/s11631-022-00549-8 DOI: https://doi.org/10.1007/s11631-022-00549-8
Al-Musawi, W. M., & Khorshid, S. Z. (2013). Determination of the saline water intrusion zone and its contamination with ground water in the Dibddiba aquifer using vertical electrical sounding technique at Basrah Governorate, southern Iraq. Mesopotamian Journal of Marine Sciences, 28(2), 93-108. DOI: https://doi.org/10.58629/mjms.v28i2.142
Alqurnawy, L. S., Almallah, I. A., & Alrubaye, A. (2022). Groundwater vulnerability analysis via GALDIT-GIS method to seawater intrusion, South of Iraq. The Iraqi Geological Journal, 146-161. https://doi.org/10.46717/igj.55.1E.12Ms-2022-05-28. DOI: https://doi.org/10.46717/igj.55.1E.12Ms-2022-05-28
Al-Qurnawy, L. S., Almallah, I. A., & Alrubaye, A. (2023, July). Identification of seawater intrusion in the dibdibba coastal aquifer, south of Iraq using chemical indicators and multivariate analyses. In IOP Conference Series: Earth and Environmental Science (Vol. 1215, No. 1, p. 012054). IOP Publishing. https://doi.org/10.1088/1755-1315/1215/1/012054. DOI: https://doi.org/10.1088/1755-1315/1215/1/012054
Al-Qurnawy, L., Almallah, I. A., & Alrubaye, A. (2024). Hydrochemical Characteristics and Spatial Variability in Coastal Aquifers Southern Iraq: Utilizing a GIS Technique. The Iraqi Geological Journal, 264-276. https://doi.org/10.46717/igj.57.2C.18ms-2024-9-26 DOI: https://doi.org/10.46717/igj.57.2C.18ms-2024-9-26
Al-Ramadhan, B. M. (1988). Residual fluxes of water in an estuarine lagoon. Estuarine, Coastal and Shelf Science, 26(3), 319-330. https://doi.org/10.1016/0272-7714(88)90068-6 DOI: https://doi.org/10.1016/0272-7714(88)90068-6
Al-Sudani, H. I. Z. (2019). Groundwater system of the Dibdibba sandstone aquifer in south of Iraq. Applied Water Science, 9(4), 72. https://doi.org/10.1007/s13201-019-0952-6 DOI: https://doi.org/10.1007/s13201-019-0952-6
Al-Suraifi, A. A. A. Groundwater and Seawater Intrusion Simulation at Basrah Coastal Aquifer (Aug. 2015). In The 2nd International Conference of Buildings, Construction and Environmental Engineering (BCEE2-2015) (p. 63).
Appelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution. CRC press. DOI: https://doi.org/10.1201/9781439833544
Ardjane, T. A., Meddah, B., Bekkoussa, B. S., Zemour, K., & Mairif, M. (2025). Groundwater quality assessment using water quality index coupled with multivariate statistical analysis in the alluvial plains of El-Abd and El-That, Tiaret Region, Northwestern Algeria. Acque Sotterranee-Italian Journal of Groundwater, 14(2). https://doi.org/10.7343/as-2025-852 DOI: https://doi.org/10.7343/as-2025-852
Athauda, S., Wang, Y., Hao, Z., Indika, S., Yapabandara, I., Weragoda, S. K., ... & Wei, Y. (2024). Geochemical assessment of the evolution of groundwater under the impact of seawater intrusion in the Mannar district of Sri Lanka. Water, 16(8), 1137. https://doi.org/10.3390/w16081137 DOI: https://doi.org/10.3390/w16081137
Atiaa, A. M. (2000). Hydrogeology of Safwan-Zubair area, south of Iraq, Unpub (Doctoral dissertation, M. Sc. Thesis, College of Science, University of Basrah, 90p).
Atiaa, A. M., & Al-Asadiy, S. A. A. A. (2007). Management of Groundwater Reseource of Dibdibba Sandy Aquifer in Safwan-Zubair Area, South of Iraq. Journal of the College of Arts. University of Basrah No, 42, 200
Baghvand, A., Nasrabadi, T., Bidhendi, G. N., Vosoogh, A., Karbassi, A., & Mehrdadi, N. (2010). Groundwater quality degradation of an aquifer in Iran central desert. Desalination, 260(1-3), 264-275. http://dx.doi.org/10.1016/j.desal.2010.02.038. DOI: https://doi.org/10.1016/j.desal.2010.02.038
Batayneh, A., Zaman, H., Zumlot, T., Ghrefat, H., Mogren, S., Nazzal, Y., & Al-Taani, A. (2014). Hydrochemical facies and ionic ratios of the coastal groundwater aquifer of Saudi Gulf of Aqaba: implication for seawater intrusion. Journal of Coastal Research, 30(1), 75-87. DOI: https://doi.org/10.2112/JCOASTRES-D-13-00021.1
Bellaredj, A. E. M. (2025). Groundwater quality assessment for drinking and irrigation in the plains of Oran (northwestern Algeria) using geographic information system, water quality indices and multivariate statistical methods. Acque Sotterranee-Italian Journal of Groundwater, 14(3). htpps://doi.org/10.7343/as-2025-878 DOI: https://doi.org/10.7343/as-2025-878
Benaafi, M., Abba, S. I., Tawabini, B., Abdulazeez, I., Salhi, B., Usman, J., & Aljundi, I. H. (2023). Integrated clustering analysis for delineating seawater intrusion and heavy metals in Arabian Gulf Coastal groundwater of Saudi Arabia. Heliyon, 9(9). https://doi.org/10.1016/j.heliyon.2023.e19784. DOI: https://doi.org/10.1016/j.heliyon.2023.e19784
Bourjila, A., Dimane, F., Ghalit, M., Taher, M., Kamari, S., El Hammoudani, Y., & Benaabidate, L. (2024). Exploring salinity origins in the Ghiss-Nekor aquifer, northern Morocco: A multivariate statistical analysis. In BIO Web of Conferences (Vol. 109, p. 01017). EDP Sciences. https://doi.org/10.1051/bioconf/202410901017 DOI: https://doi.org/10.1051/bioconf/202410901017
Buday, T. (1980). The regional geology of Iraq, stratigraphy and paleotology. Som Dar Alkitab publishing house, Mosul, 445p.
Carroll, D. (1962). Rainwater as a chemical agent of geology processes.
Chandrasekar, N., Selvakumar, S., Srinivas, Y., John Wilson, J. S., Simon Peter, T., & Magesh, N. S. (2014). Hydrogeochemical assessment of groundwater quality along the coastal aquifers of southern Tamil Nadu, India. Environmental earth sciences, 71, 4739-4750. https://doi.org/10.1007/s12665-013-2765-2. DOI: https://doi.org/10.1007/s12665-013-2864-3
Detay, M. (1997). Water wells: implementation, maintenance and restoration. JOHN WILEY & SONS, CHICHESTER(UK). 379, 1997.
El Mountassir, O., & Bahir, M. (2023). The assessment of the groundwater quality in the coastal aquifers of the Essaouira Basin, Southwestern Morocco, using hydrogeochemistry and isotopic signatures. Water, 15(9), 1769. https://doi.org/10.3390/w15091769 DOI: https://doi.org/10.3390/w15091769
El-Rawy, M., Fathi, H., Abdalla, F., Alshehri, F., & Eldeeb, H. (2023). An integrated principal component and hierarchical cluster analysis approach for groundwater quality assessment in Jazan, Saudi Arabia. Water, 15(8), 1466. https://doi.org/10.3390/w15081466. DOI: https://doi.org/10.3390/w15081466
Ghabayen, S. M., McKee, M., & Kemblowski, M. (2006). Ionic and isotopic ratios for identification of salinity sources and missing data in the Gaza aquifer. Journal of hydrology, 318(1-4), 360-373. https://doi.org/10.1016/j.jhydrol.2005.06.041 DOI: https://doi.org/10.1016/j.jhydrol.2005.06.041
Ghalib, H. B. (2000). Hydrogeochemistry and effect of pumping on the groundwater quality of Dibdabba aquifer in Safwan-Zubair Area (Southern Iraq) (Doctoral dissertation, MSc Thesis, University of Basrah).
Ghalib, H. B. (2008). Simulation Study of the effect of artificial recharge on the water quality of shallow Dibdibba Clastic Aquifer in Zubair-Safwan area, south of Iraq. Journal Basrah Researches (Sciences), 34(4), 47-57.
Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088-1090. DOI: https://doi.org/10.1126/science.170.3962.1088
Gimenez, E., & Morell, I. (1997). Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellon, Spain). Environmental geology, 29, 118-131. DOI: https://doi.org/10.1007/s002540050110
Haddad, R. H., & Hawa, A. J. (1979). Hydrogeology of the Safwan-Zubair area, south of Iraq. Tech. Bull, 132.
Hasan, S. S., Salem, Z. E., & Sefelnasr, A. (2023). Assessment of hydrogeochemical characteristics and seawater intrusion in coastal aquifers by integrating statistical and graphical techniques: quaternary Aquifer, West Nile Delta, Egypt. Water, 15(10), 1803. https://doi.org/10.3390/w15101803. DOI: https://doi.org/10.3390/w15101803
Hassan, Z. D. (2025). Geomorphological and Environmental Characteristics of the Al-Mashab and Al-Salal Marshes, Southern Iraq. Iraqi Journal of Science. https://doi:10.24996/ijs.2025.66.3.10 DOI: https://doi.org/10.24996/ijs.2025.66.3.10
IBM Corp, N. (2017). IBM SPSS statistics for windows. Version 25.0. Jassim, S. Z., & Goff, J. C. (Eds.). (2006). Geology of Iraq. DOLIN, sro, distributed by Geological Society of London.
Kanagaraj, G., Elango, L., Sridhar, S. G. D., & Gowrisankar, G. (2018). Hydrogeochemical processes and influence of seawater intrusion in coastal aquifers south of Chennai, Tamil Nadu, India. Environmental Science and Pollution Research, 25, 8989-9011. https://doi.org/10.1007/s11356-017-0795-0. DOI: https://doi.org/10.1007/s11356-017-0910-5
Langenegger, O. (1990). Groundwater quality in rural areas of Western Africa. In Sahel forum. The state-of-the art of hydrology and hydrogeology in the arid and semi-arid areas of Africa (pp. 574-584).
McArthur, J. M., Turner, J., Lyons, W. B., & Thirlwall, M. F. (1989). Salt sources and water-rock interaction on the Yilgarn Block, Australia: isotopic and major element tracers. Applied Geochemistry, 4(1), 79-92. https://doi.org/10.1016/0883-2927(89)90060-7. DOI: https://doi.org/10.1016/0883-2927(89)90060-7
Mohanty, A. K., & Rao, V. G. (2019). Hydrogeochemical, seawater intrusion and oxygen isotope studies on a coastal region in the Puri District of Odisha, India. Catena, 172, 558-571. https://doi.org/10.1016/j.catena.2018.09.010. DOI: https://doi.org/10.1016/j.catena.2018.09.010
Muttashar, W. R., Al-Aesawi, Q. M., Al-Nasrawi, A. K., Almayahi, D. S., & Jones, B. G. (2024). Coastline instability evaluation: multitemporal bathymetric mapping and sediment characteristics. Environmental Earth Sciences, 83(1), 43. https://doi.org/10.1007/s12665-024-10962-4. DOI: https://doi.org/10.1007/s12665-023-11375-3
Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US geological survey techniques and methods, 6(A43), 497. https://pubs.usgs.gov/tm/06/a43/ DOI: https://doi.org/10.3133/tm6A43
Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928. DOI: https://doi.org/10.1029/TR025i006p00914
Rajendiran, T., Sabarathinam, C., Chandrasekar, T., Panda, B., Mathivanan, M., Nagappan, G., ... & Alagappan, R. (2021). Geochemical variations due to salinization in groundwater along the southeast coast of India. SN Applied Sciences, 3(5), 581. https://doi.org/10.1007/s42452-021-04551-2 DOI: https://doi.org/10.1007/s42452-021-04551-2
Richards, L. A. (Ed.). (1954). Diagnosis and improvement of saline and alkali soils (No. 60). US Government Printing Office. DOI: https://doi.org/10.1097/00010694-195408000-00012
Samsudin, A. R., Haryono, A., Hamzah, U., & Rafek, A. G. (2008). Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: a case study from north Kelantan, Malaysia. Environmental Geology, 55(8), 1737-1743. http://dx.doi.org/10.1007/s00254-007-1124-9. DOI: https://doi.org/10.1007/s00254-007-1124-9
Sarikhani, R., Ghassemi Dehnavi, A., Ahmadnejad, Z., & Kalantari, N. (2015). Hydrochemical characteristics and groundwater quality assessment in Bushehr Province, SW Iran. Environmental Earth Sciences, 74, 6265-6281. https://doi.org/10.1007/s12665-015-4792-5. DOI: https://doi.org/10.1007/s12665-015-4651-9
Sawyer, C. N., & McCarty, P. L. (1967). Chemistry for sanitary engineers.
Selvam, S., Manimaran, G., & Sivasubramanian, P. (2013). Hydrochemical characteristics and GIS-based assessment of groundwater quality in the coastal aquifers of Tuticorin corporation, Tamilnadu, India. Applied Water Science, 3, 145-159. https://doi.org/10.1007/s13201-013-0122-3. DOI: https://doi.org/10.1007/s13201-012-0068-8
Shah, B., Kansara, B., Shankar, J., Soni, M., Bhimjiyani, P., Bhanushali, T., & Sircar, A. (2019). Reckoning of water quality for irrigation and drinking purposes in the konkan geothermal provinces, Maharashtra, India. Groundwater for sustainable development, 9, 100247. https://doi.org/10.1016/j.gsd.2019.100247. DOI: https://doi.org/10.1016/j.gsd.2019.100247
Simler, R. (2009). DIAGRAMMES: Logiciel d’hydrochimie multilangage en distribution “Multilingual hydrochemistry software in distribution”.
Sissakian, V. K., & Fouad, S. F. (2015). Geological map of Iraq, scale 1:1000 000, 2012. Iraqi Bulletin of Geology and Mining, 11(1), 9-16.
Sissakian, V. K., & Mohammed, B. S. (2007). Stratigraphy. Iraqi Bulletin of Geology and Mining, (1), 51-124.
Sissakian, V. K., Shihab, A. T., Al-Ansari, N., & Knutsson, S. (2014). Al-Batin alluvial fan, southern Iraq. Engineering, 6(11), 699-711. DOI: https://doi.org/10.4236/eng.2014.611069
Stuyfzand, P. J. (1989). A new hydrochemical classification of water types. Iahs Publ, 182, 89-98. DOI: https://doi.org/10.1017/CBO9780511623004.011
Todd, DK. (1959). Groundwater hydrology. United States. John Wiley and Sons. Inc.pp 277-294
Tomaszkiewicz, M., Abou Najm, M., & El-Fadel, M. (2014). Development of a groundwater quality index for seawater intrusion in coastal aquifers. Environmental Modelling & Software, 57, 13-26. https://doi.org/10.1016/j.envsoft.2014.03.014. DOI: https://doi.org/10.1016/j.envsoft.2014.03.010
Zhang, M. H., Zhou, S. Y., Liu, D. D., Zhang, Y., Zhang, Y. X., Chen, X., & Shi, W. P. (2024). Characteristics and genesis of groundwater salinization in coastal areas of the Lower Reaches of Oujiang Basin. Journal of Groundwater Science and Engineering, 12(2), 190-204. https://doi.org/10.26599/JGSE.2024.9280015 DOI: https://doi.org/10.26599/JGSE.2024.9280015

How to Cite



Assessment of groundwater influenced by seawater using geochemical modeling and statistical analysis: Basrah Province, Iraq. (2025). Acque Sotterranee - Italian Journal of Groundwater, 14(4). https://doi.org/10.7343/as-2025-917