Original Papers

Comparative analysis of water temperatures variability from hourly to annual time scales in two large karst springs in the dinaric karst

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Published: 23 December 2025
169
Views
101
Downloads

Authors

This study presents a comparative analysis of water temperatures from the Jadro and Ombla springs, two of the largest karst springs in the Dinaric Karst region of Croatia, situated 162.7 km apart. Both analyzed springs fall into the category of highly karstified systems. The analysis encompasses data recorded hourly from January 1, 2013, to December 31, 2021. During this period, comprehensive datasets of hourly water temperatures were available for both springs. The study examined four temporal scales: annual, monthly, daily, and hourly. Results revealed both similarities and distinctions in water temperature behavior within the coastal Dinaric Karst region. At Jadro and Ombla, the average annual water temperatures were 12.895ºC and 12.875ºC, respectively. The air temperature significantly influences the variations in water temperatures at both springs. At Jadro, the upward temperature trend was statistically insignificant, while at Ombla, the downward trend was similarly insignificant. The temperature range at Jadro (2.0°C) was significantly smaller than that at Ombla (3.4°C). From December to April, Jadro exhibited higher average monthly water temperatures than Ombla, while from June to September, temperatures at Jadro were lower than those at Ombla. The water temperatures at both springs were nearly identical during May, October, and November. The differences in water temperature ranges between the two springs are primarily shaped by the location, size, and natural characteristics of their catchments, including surface terrain, geological structure, hydrogeological properties, and the relative position of the water table to the ground surface.

Downloads

Download data is not yet available.

Citations

Adinolfi, F. R.; Carucci, V.; Falgiani, A.; Manetta, M.; Parisse, B.; Petitta, M.; Rusi, S.; Spizzico, M.; Tallini, M. (2012). Changes on groundwater flow and hydrochemistry of the Gran Sasso carbonate aquifer due to the 2009 L’Aquila earthquake. Italian Journal of Geosciences, 131(3), 459-474. https//doi.org/10.3301/IJG.2012.05. DOI: https://doi.org/10.3301/IJG.2011.34
Anderson, M. P. (2005). Heat as a ground water tracer. Ground Water, 43(6), 951–968. https//doi.org/10.1111/j.1745-6584.2005.00052.x. DOI: https://doi.org/10.1111/j.1745-6584.2005.00052.x
Bakalowicz, M. (2015). Karst and karst groundwater resources in the Mediterranean. Environmental Earth Sciences, 74(1), 5-14. https//doi.org/10.1007/s12665-015-4239-4 DOI: https://doi.org/10.1007/s12665-015-4239-4
Bergheim, L. (2020). Exploring the intersection of climate change and cultural heritage: the case of Croatia’s Eastern Adriatic Coast. Ph.D. Thesis, University of Maine, Orono, ME, USA
Bonacci, O. (1987). Karst hydrology with special references to Dinaric karst. Springer Verlag, Berlin. DOI: https://doi.org/10.1007/978-3-642-83165-2
Bonacci, O. (1995). Ground water behaviour in karst: example of the Ombla Spring (Croatia). Journal of Hydrology, 165(1-4), 113-134. https//doi.org/10.1016/0022-1694(94)02577-X. DOI: https://doi.org/10.1016/0022-1694(95)92769-A
Bonacci, O. (2015). Karst hydrogeology/hydrology of Dinaric chain and isles. Environmental Earth Sciences, 74(1), 37-55. https//doi.org/10.1007/s12665-014-3677-8. DOI: https://doi.org/10.1007/s12665-014-3677-8
Bonacci, O. (2020). Potresi u kršu i njihov utjecaj na izvore i otvorene vodotoke “Earthquakes in karst and their impact on springs and open watercourses”. Hrvatska Vodoprivreda, XXVIII(231),17-21.
Bonacci, O.; Roje-Bonacci, T. (2023). Water temperature and electrical conductivity as an indicator of karst aquifer: the case of Jadro Spring (Croatia). Carbonates and Evaporites, 38, 55. https://doi.org/10.1007/s13146-023-00881-x. DOI: https://doi.org/10.1007/s13146-023-00881-x
Bonacci, O.; Roje-Bonacci, T.; Vrsalović, A. (2023a). Different groundwater behaviour in deep karst boreholes: the case of Jadro spring basin (Dinaric karst, Croatia). Acque Sotterranee, 12(4), 59-69. https://doi.org/10.7343/as-2023-682. DOI: https://doi.org/10.7343/as-2022-682
Bonacci, O.; Roje-Bonacci, T.; Vrsalović, A.; Kuk, K. (2023b). What happened to the karst spring Ombla water temperature? Carbonates and Evaporites, 38, 68. https://doi.org/10.1007/s13146-023-00881-x. DOI: https://doi.org/10.1007/s13146-023-00892-8
Buljan, R.; Prelogović, E.; Paviša, T. (2000). Izvorište Ombla. Zbornik radova 2. hrvatskog geološkog kongresa (ur. Vlahović, I.; Biondić, R.) “The Ombla spring. In: Vlahović, I; Biondić, R. (eds). Proceedings of the 2nd Croatian Geological Congress”. Institut za Geološka Istraživanja, Zagreb. 555-560.
Bulut, N., Yuceer, H. (2023) A literature review on the management of underwater cultural heritage. Ocean Coast Manag 245:106837 DOI: https://doi.org/10.1016/j.ocecoaman.2023.106837
Bundschuh, J. (1997). Temporal variations of spring water temperatures in relation to the extents of the heat transport modes occurring in the karstifi ed lower Gypsum-Keuper aquifer (Karnian, southern Germany U: Proceedings of the 6th Conference on Limestone Hydrology and Fissured Media (ur. Jeannin, P. Y.) La Chaux-de-Fonds, Switzerland, 129–132.
Carro, M.; De amicis, M.; Luzi, L. (2005). Hydrogeological changes related to the Umbria–Marche Earthquake of 26 September 1997 (Central Italy). Natural Hazards, 34(3), 315-339. https//doi.org/10.1007/s11069-004-2074-0. DOI: https://doi.org/10.1007/s11069-004-2074-0
Chi, G.; Xing, L.; Xing, X.; Li, C.; Dong, F. (2020). Seepage characteristics of karst water system using temperature tracer technique. Earth and Space Science, 7(8), e2019EA000712. https//doi.org/10.1029/2019EA000712. DOI: https://doi.org/10.1029/2019EA000712
Covington, M. D.; Luhmann, A. J.; Gabrovšek, F.; Saar, M. O.; Wicks. C. M. (2011). Mechanisms of heat exchange between water and rock in karst conduits. Water Resources Research, 47(10), W10514. https//doi.org/10.1029/2011WR010683. DOI: https://doi.org/10.1029/2011WR010683
Cvijanović, D. (1971). Seizmičnost dubrovačkog područja “Dubrovnik region seismicity”. Acta Seismologica Iugoslavica, 31–56.
Cvijić, J. (1893). Das Karstphänomen. Pencks Geogr Abh 5(3), 217–330.
Denić-Jukić, V.; Jukić, D. (2003). “Composite transfer function for karst aquifers”. Journal of Hydrology, 274(1-4), 80-94. https//doi.org/10.1016/S0022-1694(02)00393-1. DOI: https://doi.org/10.1016/S0022-1694(02)00393-1
Di Matteo, L.; Dragoni, W.; Azzaro, S.; Pauselli, C.; Porreca, M.; Bellina, G.; Cardaci, W. (2020). Effects of earthquakes on the discharge of groundwater systems: The case of the 2016 seismic sequence in the Central Apennines, Italy. Journal of Hydrology, 583, 124509. https://doi.org/10.1016/j.jhydrol.2019.124509. DOI: https://doi.org/10.1016/j.jhydrol.2019.124509
Dogwiler, T.; Wicks, M. C. (2005). Thermal variations in the hyporheic zone of karst stream. Speleogenesis and Evolution of Karst Aquifers, 3(1), 1-11. https//doi.org/10.5038/1827-806X.35.2.1.
Fidelibus, M. C.; Pulido-Bosch, A. (2019). Groundwater temperature as an indicator of the vulnerability of karst coastal aquifers. Geosciences, 9(1), 23. https//doi.org/10.3390/geosciences9010023. DOI: https://doi.org/10.3390/geosciences9010023
Ford, D.; Williams, P. (2007). Karst hydrogeology and geomorphology. Wiley, Chichester, UK. https//doi.org/10.1002/9781118684986. DOI: https://doi.org/10.1002/9781118684986
Gabrovšek, F.; Turk, J. (2011). Water temperature as a natural tracer of groundwater in karst: the case of the Pivka and Unica Rivers. U: Karstology and development challenges on karst I. Carsologica 12 (ur. Knez, M.; Petrič, M.; Slabe, T.) ZRC Publishing, Ljubljana, 38–46.
Genthon, P.; Bataille, A.; Fromant, A.; D’Hulst, D.; Bourges, F. (2005). Temperature as a marker for karstic waters hydrodynamics. Inferences from 1 year recording at La Peyrére cave (Ariège, France). Journal of Hydrology, 311(1-4), 157–171. https//doi.org/10.1016/j.jhydrol.2005.01.015. DOI: https://doi.org/10.1016/j.jhydrol.2005.01.015
Goldscheider, N.; Chen, Z.; Auler, A. S.; Bakalowicz, M.; Broda, S.; Drew, D.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Stevanovic, Z.; Veni, G. (2020). Global distribution of carbonate rocks and karst water resources. Hydrogeology Journal, 28(5), 1661–1677. https://doi.org/10.1007/s10040-020-02139-5 DOI: https://doi.org/10.1007/s10040-020-02139-5
Gosar, A.; Brenčič, M. (2013). Possible relation between the sudden sinking of river Iška and the sequence of weak earthquakes in September–October 2010 near Iška Vas (Central Slovenia). Acta Carsolologica, https://doi.org/10.3986/ac.v41i2-3.563. DOI: https://doi.org/10.3986/ac.v41i2-3.563
Herak, D.; Herak, M.; Prelogović, E.; Cabor, S. (1988). Some characteristics of the Adriatic Sea earthquake sequence (January-February 1986). Bolletino di Geofisica Teorica ed Applicata, XXX(119-120), 385-394.
Herak, M.; Orlić, M.; Kunovec-Varga, M. (2001). Did the Makarska earthquake of 1962 generate a tsunami in the central Adriatic archipelago?, Journal of Geodynamics, 31(1), 71-86. https//doi.org/10.1016/S0264-3707(00)00018-1. DOI: https://doi.org/10.1016/S0264-3707(00)00018-1
Hinkle, D. E.; Wiermsa, W.; Jurs, S. G. (2003). Applied statistics for the behavioural sciences. Houghton Mifflin, Boston.
Ilakovac, B. (1982). Rimski akvedukt! Na području sjeverne Dalmacije. “Roman aqueduct in the area of northern Dalmatia”. Arheološki muzej Zadar i Sveučilišna naklada Liber, Zagreb, p. 279.
Jukić. D.; Denić-Jukić, V. (2009). Groundwater balance estimation in karst by using a conceptual rainfall-runoff model. Journal of Hydrology, 373(3-4), 302-315. https//doi.org/10.1016/j.jhydrol.2009.04.035. DOI: https://doi.org/10.1016/j.jhydrol.2009.04.035
Kapelj, S.; Kapelj, J.; Švonja, M. (2012). Hidrogeološka obilježja sliva Jadra i Žrnovnice “Hydrogeological characteristics of the Jadro and Žrnovnica catchments”. Tusculum, 5(1), 205-216.
Kaufmann, G.; Gabrovšek, F.; Romanov, D. (2014). Deep conduit flow in karst aquifers revisited. Water Resources Research, 50(6), 4821–4836. https//doi.org/10.1002/2014WR015314. DOI: https://doi.org/10.1002/2014WR015314
Kogovšek, J.; Petrič, M. (2010). Water temperature as a natural tracer – a case study of the Malenščica karst spring (SW Slovenia). Geologia Croatica, 63(2), 171-177. https//doi.org/104154/gc.2010.14. DOI: https://doi.org/10.4154/gc.2010.14
Kranjc, A. (2004). Dinaric karst. U: Encyclopedia of caves and karst science (ur. Gunn, J.) Fitzroy Dearborn, New York, 591-594.
Kresic, N. (2023). Hydrogeology 101. Blue Ridge Press LLC, Warrenton, VA, USA.
Kresic, N.; Bonacci, O. (2010). Spring discharge hydrograph. U: Groundwater hydrology of springs, engineering, theory, management, and sustainability (ur. Kresic, N.; Stevanovic, Z.) Butterworth-Heinemann/Elsevier, New York, 129–164. DOI: https://doi.org/10.1016/B978-1-85617-502-9.00004-9
Lehmann, A. J. (2011). Water temperature as a tracer in karst aquifers. PhD Thesis, University of Minnesota, US.
Long, A. J.; Gilcrease, P. C. (2009). A one-dimensional heat-transport model for conduit flow in karst aquifers. Journal of Hydrology, 378(3-4), 230–239. https//doi.org/10.1016/j.jhydrol.2009.09.024. DOI: https://doi.org/10.1016/j.jhydrol.2009.09.024
Marasović, K.; Margeta, J. (2017). A study of Roman water intake structures at the Jadro River’s spring. Vjesnik za Arheologiju i Historiju Dalmatinsku, 110(2), 509-532
Margeta J (2023) Lead was an acceptable material for Roman water supply. Water History. https://doi.org/10.1007/s12685-023-00335-0 DOI: https://doi.org/10.1007/s12685-023-00335-0
Margeta, J. (2025). Climate hazards management of historic urban centers: the case of Kaštela Bay in Croatia. Climate 13:153. https://doi.org/10.3390/cli13070153 DOI: https://doi.org/10.3390/cli13070153
Martin, J. B.; Dean, R. W. (1999). Temperature as a natural tracer of short residence times for groundwater in karst aquifers. U: Karst Modelling. (ur. Palmer, A.; Palmer, M.; Sasowsky, I.) Karst Waters Institute Special Publication, 5, 236–242.
McCormick, M.; Büntgen, M. U.; Cane, M. A.; Cook, E. R.; Harper, K.; Huybers, P. J.; Litt, T. (2012). Climate change during and after the Roman Empire: reconstructing the past from scientific and historical evidence. Journal of Interdisciplinary History, 43(2), 169–220. DOI: https://doi.org/10.1162/JINH_a_00379
Milanović, P. (1996). Ombla Spring, Croatia. Environmental Geology, 27(2), 105–107. https//doi.org/10.1007/BF01061679. DOI: https://doi.org/10.1007/s002540050037
Milanović, P. T. (2021). Karst Istočne Hercegovine i dubrovačkog priobalja. Bina, Banja Luka, Bosna i Hercegovina.
Nikitina, M. A.; Chernukha, I. M. (2023). Nonparametric statistics. Part 3. Correlation coefficients. Theory and practice of meat processing, 8(3):237-251. https://doi.org/10.21323/2414-438X-2023-8-3-237-251 DOI: https://doi.org/10.21323/2414-438X-2023-8-3-237-251
O’Driscoll, M. A.; DeWalle, D. R. (2006). Stream-air temperature relations to classify stream-ground water interactions in a karst setting, central Pennsylvania, USA. Journal of Hydrology, 329(1-2), 140–153. https//doi.org/10.1016/j.jhydrol.2006.02.010. DOI: https://doi.org/10.1016/j.jhydrol.2006.02.010
Parise, M. (2018). Recent advances in karst research: from theory to fieldwork. In: Stevanović, Z.; Kresic, N.; Culver, D. C. (Eds.), Advances in Karst Science: From Theory to Fieldwork (Geological Society, London, Special Publications, 466), pp. 309–327. https://doi.org/10.1144/SP466.26 DOI: https://doi.org/10.1144/SP466.26
Renner, S.; Sauter, M. (1997). Heat as a natural tracer: Characterisation of a conduit network in a karst aquifer using temperature measurements of the spring water. U: Karst Waters & Environmental Impacts (ur. Günay, G.; Johnson, I.). Balkema, Rotterdam, 423−431.
Roglić, V. (1976). Socio-geografski aspekt dinarskog krša, dinarskog kulturnog areala i dinarskog brdsko planinskog prostora. Hrvatski Geografski Glasnik, 38(1), 253-268.
Roje-Bonacci, T.; Bonacci, O. (2013). The possible negative consequences of underground dam and reservoir construction and operation in coastal karst areas: an example of the hydro-electric power plant (HEPP) Ombla near Dubrovnik (Croatia). Natural Hazards and Earth System Sciences, 13(8), 2041-2052. https//doi.org/10.5194/nhess-13-2041-2013. DOI: https://doi.org/10.5194/nhess-13-2041-2013
Shah, R. A.; Jeelani, G.; Yadav, J. S.; Rai, S. K. (2022). Hydrogeochemical and stable isotopic evidence to different water origins of karst springs in the western Himalayas, India. Environmental Earth Sciences, 81, 297. https://doi.org/10.1007/s12665-022-10397-7. DOI: https://doi.org/10.1007/s12665-022-10397-7
Sović, I. (1999). Croatian macroseismic database. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(6), 501-503. https://doi.org/10.1016/S1464-1895(99)00061-7. DOI: https://doi.org/10.1016/S1464-1895(99)00061-7
Stroj, A.; Briški, M.; Oštrić, M. (2020). Study of groundwater flow properties in a karst system by coupled analysis of diverse environmental tracers and discharge dynamics. Water, 12, 2442. https://doi.org/10.3390/w12092442. DOI: https://doi.org/10.3390/w12092442
Tamburini, A.; Menichetti, M. (2019). Groundwater temperature as a natural tracer to characterize hydraulic behaviour and geometry of carbonate aquifers: Mt. Nerone karst system, central Italy. Rendiconti Online Società Geologica Italiana, 47, 121-125. https://doi.org/10.3301/ROL.2019.22. Vogel, R. N.; Fennessey, N. M. (1995). Flow duration curves ii: a review of applications in water resources planning. Journal of American Water Association, 31(6), 1029-1039. https://doi.org/10.1111/j.1752-1688.1995.tb03419.x. DOI: https://doi.org/10.3301/ROL.2019.22
Xanke, J.; Goldscheider, N.; Bakalowicz, M.; Barberá, J. A.; Broda, S.; Chen, Z.; Ghanmi, M.; Günther, A.; Hartmann, A.; Jourde, H.; Liesch, T.; Mudarra, M.; Petitta, M.; Ravbar, N.; Stevanović, Z. (2024). Carbonate rocks and karst water resources in the Mediterranean region. Hydrogeology Journal, 32(5), 1397–1418. https://doi.org/10.1007/s10040-024-02810-1. DOI: https://doi.org/10.1007/s10040-024-02810-1
Zwitter, Ž. (2024). The Dinaric Karst in environmental history perspective. In: Kranjc, G. (Ed.), Environmental Histories of the Dinaric Karst, pp. 319–334. Springer, Cham. https://doi.org/10.1007/978-3-031-56089-7_16 DOI: https://doi.org/10.1007/978-3-031-56089-7_1

How to Cite



Comparative analysis of water temperatures variability from hourly to annual time scales in two large karst springs in the dinaric karst. (2025). Acque Sotterranee - Italian Journal of Groundwater, 14(4). https://doi.org/10.7343/as-2025-905