Multivariate statistical analysis of the alluvial aquifer of Tadjenanet-Chelghoum Laid (Eastern Algeria)

Submitted: 26 January 2023
Accepted: 22 June 2023
Published: 28 June 2023
Abstract Views: 442
PDF: 327
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


  • Imane Dib Laboratory of Applied Research in Engineering Geology, Geotechnics, Water Sciences, and Environment, Setif 1 University, Algeria.
  • Abdelhamid Khedidja Laboratory of Mobilization and Resources Management, Department of Geology, Earth Sciences and Universe Institute, University of Batna 2, Algeria.
  • Wahid Chettah Environmental Geology Laboratory, Frères Mentouri Constantine 1 University, Algeria.

The region of Chelghoum Laid - Tadjenanet is located in eastern Algeria, in the high plains. This area is characterized by a varied age (Mio-Plio-Quaternary) formations and the human demand is answered by the groundwater hosted into the superficial aquifer of the Mio-Plio-Quaternary formations. However, the overexploitation of this aquifer leads to a drop in the piezometric surface and an increase in salinity. of this aquifer leads to a drop in the piezometric surface and an increase in the salinity of the water. A hydrochemical study using characteristic ratios and statistical tools such as principal component analysis and hierarchical ascending classification, was performed using 28 water samples. Chemical analyzes show that the waters of this aquifer are of the calcium bicarbonate type on the limits of the study area, and calcium sulphate to sodium chloride in the centre. The spatial evolution of chemical water facies is explained by the phenomenon of dissolution and ion exchange between the alkali metals and alkaline earth metals coinciding with the West-East flow direction. The application of the various tools shows that the aquifer is recharged by precipitation at the plains border, where the water acquires its original mineralization from the carbonate formations, and becomes more mineralized in chlorides, sodium and sulphates concentrations in contact with the salt-bearing terrigenous formations of the Mio-Plio-Quaternary. The salinization of the waters seems to be mainly due to the dissolution of gypsum, halite and epsomite. The application of the ascending hierarchical classification and the principal component analysis shows the existence of two groups of water whose salinity increases from the borders towards the center of the plain following the main flow direction.

Appelo ,C., & Postma, D. (1993). Geochemistry, groundwater and pollution. Journal of Hydrology, 155(1-2), 295-296. DOI:

APHA. (1995). American Public Health Association, AWWA (American Water Works Association), and WPCF (Water Pollution Control Federation). Standard methods for the examination of water and waste water (19th ed.). New York, USA.

Alther,G.A. (1979). A simplified statistical sequence applied to routine water quality analysis: a case history. Ground Water 17, 556–561. DOI:

Bencer,S., Boudoukha,A., & Mouni,L.(2016). Multivariate statistical analysis of the groundwater of Ain Djacer area (Eastern of Algeria). Arab J Geosci (2016) 9:248 DOI 10.1007/s12517-015-2277-6 DOI:

Belkhiri, L., Boudoukha, A., & Mouni, L.(2011).A multivariate Statistical Analysis of Groundwater Chemistry Data. Journal Environemental Reserch. 5(2), 537-544.

Bensouilah ,S, (1995). Contribution à l’étude hydrogéologique des hautes plaines sétifiennes dans le cadre de la haute vallée de l’oued Rhumel en amont d’oued Athménia.Th.Magi.Univ.Constantine.184p.

Boudoukha ,A., Kowalsky, W.M., & Pharisat, A. (1997). Evolution des sédiments lacustres Plio-Villafranchiens des dépressions fermées d’El Eulma. Est algérien. Bulletin de la Société des Sciences Naturelles du Pays Montbéliard, 187-200.

Cerling, T.E., Pederson, B.L., & Damm, K.L.V. (1989). Sodium–calcium ion exchange in the weathering of shales: implications for global weathering budgets. Geology 17, 552–554. DOI:<0552:SCIEIT>2.3.CO;2

Dib,I Khedidja,A., Chattaha,W., & Hadji,R.(2022).Multivariate statistical-based approach to the physical-chemical behavior of shallow groundwater in a semiarid dry climate: The case study of the Gadaïne-Ain Yaghout plain NE Algeria. Mining of Mineral Deposits Volume 16 (2022), Issue 3, 38-47. DOI:

Dagnelie ,P. (2006). Statistique théorique et appliquée. Tome 2 : Inférences à une et à deux dimensions. Bruxelles-université DE Boeck et Larcier.

Droubi, A., Cheverry, C., Fritz, B., &Tardy Y. (1976). Géochimie des eaux et des sels dans les sols des polders du lac Tchad: Application d'un modèle thermodynamique de simulation de l'évaporation. Chemical Geology. 17, 165-177. DOI:

Farnham, I.M., Stetzenbach, K.J., Singh, A.K., Johannesson, K.H. (2000). Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system. Mathematical. Geology. 32, 943–968. DOI:

Fisher, R.S., Mulican, W.F. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan desert, Trans-Pecos, Rexas, USA. Hydrogeology Journal, 10(4) 455–474. DOI:

Ghodbane, M., Boudoukha, A., & Benaabidate, L.(2016). Hydrochemical and statistical characterization of groundwater in the Chemora area, Northeastern Algeria. Desalination and Water Treatment, 57(32) 14858-14868. DOI:

Guler, C., & Thyne, G.D. (2004). -Hydrologic and geologic factors controlling surface and Groundwater chemistry in Indian wells-Owens Valley area, southeastern California, USA. J. Hydrol., 285: 177-198. DOI:

Issaadi, A. (1981). Etude hydrogéologique des massifs du Guerion et Fortars. Thèse,3ème cycle, Univ. Haouari Boumedienne, Alger.

Kaiser, H.F. (1960). -The application of electronic computers to factor analysis. Educ. Psychol.Meas., 20: 141-151. DOI:

Katz, B.G., Coplen,T.B., Bullen,T.D., Davis J.H. (1998). Use of chemical and isotopic tracers to characterize the interaction between groundwater and surface water in mantled Karst. Groundwater, 35(6) 1014–1028. DOI:

Khedidja,A., & Dib,I.(2022). Effect of the agriculture on the quality of groundwater in the alluvial aquife of the tadjenanet area (eastern algeria) .Geomatics, Landmanagement and Landscape No. 3 • 2022, 45–57. DOI:

Khedidja A, Boudoukha A (2019) Quality assessment of shallow groundwater for irrigation purposes in Tadjenanet – Chelghoum Laid area (Eastern Algeria). International Journal of River Basin Management, 19:2, 141-148, DOI: 10.1080/15715124.2019.1628031. DOI:

Khedidja, A.(2016). Caractérisation des paramètres hydrodynamiques de l’aquifère de Tadjnanet –Chelghoum Laid et impact de la pollution des eaux de surface sur les eaux souterraines. Thèse de Doctorat en Sciences. Univ. Batna 2.

Khedidja, A., & Boudoukha, A.(2013). Risk assessment of agricultural pollution on groundwater quality in the high valley of Tadjenanet – Chelghoum Laid (Eastern Algeria) Publication au Journal International. Science and engineering. Desalination and water treatment /Vol.51, January 2013, pp.292- 301. DOI:

Maya, A.L., & Loucks, M.D. (1995). Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range. Journal of Hydrology, 172, 31–59. DOI:

Meng, S.X., & Maynard, J.B. (2001). Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in Sao Paulo state. Br. Journal of Hydrology. 250, 78–97. DOI:

Said, I., Merz, C., Salman, A., Schneider, M., & Winkler, A. (2020). Identification of hydrochemical processes using multivariate statistics in a complex aquifer system of Sohag region, Egypt. Environ Earth Sci, 79. https://doi. org/10.1007/s12665-020-08913-8 DOI:

Tiri ,A., Belkhiri ,L., Boudoukha, A., & Lahbari, N. (2011). Characterization and evaluation of the factors affecting the geomistry of surface water of Koudiat Medouar basin. Algéria. African Journal of environmental Science and Technology. 5(5). 355-362.

Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal Statistical Association. 69, 236–244. DOI:

Wildi, W. (1983). La chaîne tello-rifaine (Algérie, Maroc, Tunisie) : structure, stratigraphie et évolution du Trias au Miocène, Revue de géologie dynamique et de géographie physique. Paris. 24, 201-297.

Williams, R.E. (1982). Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized sources. Ground Water 20, 466–478. DOI:

Vila, J.M. (1980). La chaîne alpine de l’Algérie orientale et des confins Algéro-Tunisiens. Thèse de Doctorat- es -sciences, Université Pierre et Marie curie, Paris VI.

Voudouris, K. S., Lambrakis, N. J., Papatheothorou, G., & Daskalaki, P. (1997). An application of factor analysis for the study of the hydrogeological conditions in Plio-Pleistocene aquifers of NW Achaia (NW Peloponnesus, Greece). Mathematical Geology, 29, 43-59. DOI:

Dib, I., Khedidja, A., & Chettah, W. (2023). Multivariate statistical analysis of the alluvial aquifer of Tadjenanet-Chelghoum Laid (Eastern Algeria). Acque Sotterranee - Italian Journal of Groundwater, 12(2), 67–75.


Download data is not yet available.