Original Papers
26 June 2025

Ranking multiple infiltration formulas to determine their match to trustable hydrogeological parameters obtained under highly controlled conditions. Santiuste basin, Los Arenales Living Lab, Spain

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
0
Views
0
Downloads

Authors

Hydraulic conductivity is a crucial variable in hydrological studies involving groundwater resources. It provides insight into underground water flow and is essential for creating numerical groundwater models, evaluating an aquifer’s potential for water supply and intentional recharge, and determining site suitability for construction projects. Many surveys and tests can be used to estimate hydraulic conductivity. Authors have developed a methodology to determine the best method for estimating hydraulic conductivity in an intensely monitored area. This involves comparing parameters observed on-site and applying widely-accepted formulas from hydrogeological literature. The methodology was implemented in the Santiuste basin, which is part of the Los Arenales Managed Aquifer Recharge (MAR) systems. In this area, reliable hydrological data sets have been collected for approximately 15 years using various sensors under highly controlled conditions. Direct measures of real horizontal (Kxy) and vertical (Kz) hydraulic conductivities, along with other parameters, have been assessed to be compared with the results of formulas. The authors have tested a total of 20 formulas and methods to evaluate which theoretical formula best matches the hydraulic conductivities obtained in the field. We have proposed a ranking of formulations based on their accuracy in relation to the observed data. We have also developed a correlation matrix among the different environmental conditions and MAR water flow to assess the relationship among several parameters, and the weight of each for groundwater movement in this specific MAR system. The methodology presented can help to determine the best groundwater flow interpretation formulas in particular conditions.

Altmetrics

Downloads

Download data is not yet available.

Citations

ASTM (2018) ASTM D3385-18 Standard Test Method For Infiltration Rate of Soils in Field Using Double-Ring Infiltrometer. ASTM International.
Bouwer, H. y Rice, R.C. (1976). A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Res. Vol. 12 (3), 423-428.
Bouwer, H. (1989). Discussion of the Bouwer and Rice slug test-an update. Ground Water, vol. 27(3), 304-309.
Bouwer, H. (1999). Artificial recharge of groundwater: Systems, design, and management. In: Mays LW (ed.) Hydraulic design handbook. McGraw-Hill, New York, pp 24.1–24.44
Bouwer, H. (2002). Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10(1):121–142
Cassan, M. (2000). Application des essais Lefranc a l´évaluation du coefficient d’anisotropie hydraulique Del sols aquifers “Lefranc essays application to evaluate the anisotropy coefficient of aquifers”. Revue Française de géotechnique, nº 90, 2000, p. 25-43. https://www.geotechnique-journal.org/articles/geotech/pdf/2000/01/geotech2000090p25.pdf - last accessed 22/01/2025.
CIS. (2023). Common Implementation Strategy for the Water Framework Directive and the Floods Directive. Guidance document nº XX (draft). Managed Aquifer Recharge (MAR) under the Water Framework Directive. Available online at: https://circabc.europa.eu/ui/group/9ab5926d-bed4-4322-9aa7-9964bbe8312d/library/009c6b9f-3773-4592-ad79-3503dbf6d07f/details
Comillas Pontifical University, iMAT. (2024). Ingeniería Matemática e Inteligencia Artificial (iMAT). “Mathematical engineering and artificial intelligence”. Department of Statistics. ICAI. https://www.gradomania.com/grado-en-ingenieria-matematica-e-inteligenciaartificial-madrid-320618_q08.html - last accessed 22/01/2025.
Cooper, HH Jr, Jacob, CE. (1946). A generalized graphical method for evaluating formation constants and summarizing well field history. Trans Am Geophys Union 27 526–534. https://doi.org/10.1029/TR027i004p00526 - last accessed 22/01/2025.
Cooper, H.H., Bredehoeft, J.D. y Papadopulos, S.S. (1967). Response of a finite-diameter well to an Instantaneous charge of water. Water Resources Research. Vol. 3, 263-269.
Custodio, E & Llamas, M.R. (1983). (EDS.). Hidráulica de captaciones de agua subterránea “Groundwater abstraction hydraulics”. In: Hidrología Subterránea (Groundwater Hydrology), pp. 969-981. Ed. Omega, 2 Vols., 2,350 pp.
Custodio, E. (1986). “Recarga artificial de acuíferos.” “Artificial recharge of aquifers”. Boletín de Informaciones y Estudios, nº 45. Servicio Geológico, Ministerio de Obras Públicas y Urbanismo (MOPU). Madrid. 148 pg.
Darcy, H. (1856). Les fontaines publiques de la ville de Dijon “Public fountains in the city of Dijon”. Dijon, París 1856.
DINA-MAR. (2010). DINA-MAR: La gestión de la recarga de acuíferos en el marco del desarrollo sostenible. Desarrollo tecnológico “Management aquifer recharge in the framework of sustainable development. Technological development”. Grafinat, Madrid, Spain. ISBN 978-84-614-5123-4. Editor: Fernández Escalante, E. https://dinamar.tragsa.es/pdf/dina-mar-2007-2011-libro.pdf - last accessed 22/01/2025.
Dillon, P., Stuyfzand, P., Grischek, T. et al. (2019 ). Sixty years of global progress in managed aquifer recharge. Hydrogeol J 27, 1–30. 2019. https://doi.org/10.1007/s10040-018-1841-z
Dupuit, J. (1857). Mouvement de l’eau a travers le terrains permeables “Water movement through permeable ground”. C. R. Hebd. Seances Acad. 459 Sci., 45:92–96, 1857.
Ernst, L.F. (1950). A new formula for the calculation of permeability factor with the Auger-hole method. T.N.C. Groningen, 1950. Translated from the Dutch by H. Bouwer, Cornell Univ. Ithaca, N.Y. 1955.
Fernández Escalante, A.E. (2005). Recarga artificial de acuíferos en cuencas fluviales. Aspectos cualitativos y medioambientales. Criterios técnicos derivados de la experiencia en la Cubeta de Santiuste, Segovia “Artificial recharge of aquifers in river basins. Qualitative and environmental aspects. Technical criteria derived from the experience in the Cubeta de Santiuste (Segovia)”. PhD Thesis. January 2005. Universidad Complutense de Madrid. ISBN: 84-669-2800-6. https://docta.ucm.es/bitstreams/318ab949-e0fd-49d4-8d2d-81daf56ac26b/download - last accessed 22/01/2025.
Fernández Escalante, A.E. & García Merino, A. (2009). Estudio sobre la evolución de la zona no saturada en las inmediaciones de dispositivos de tipo superficial de gestión de la recarga de acuíferos. Las estaciones DINA-MAR ZNS. Primer ciclo de operatividad “Study on the evolution of the unsaturated zone in the vicinity of surface aquifer recharge management devices. DINA-MAR ZNS stations. First operational cycle”. Estudios de la zona no saturada del suelo (Studies of the unsaturated zone of the soil). Vol. IX, ZNS´09. Barcelona 2009. pg. 271-280. ISBN: 978-84-96736-83-2.
Fernández Escalante, A.E., García Asensio, J.M. and Minaya Ovejero, M.J. (2009). Propuestas para la detección y corrección de impactos producidos por procesos colmatantes en el dispositivo de recarga artificial de la Cubeta de Santiuste, Segovia “Proposals for the detection and correction of impacts caused by clogging processes in the artificial recharge device of the Cubeta de Santiuste, Segovia”. Boletín Geológico Minero (BGM), Vol. 120, nº 2. IGME. Madrid, Spain.
Fernández Escalante, A.E. 2010. Caminitos de Agua. Tres rutas hidrogeológicas en la Provincia de Segovia. Guía de interpretación (Little Water ways. Three hydrogeological routes in the Province of Segovia. Interpretation guide). Colección Hidrogeología hoy. Título 5. Ed. Grafinat. October 2010. ISBN 978-84-614-4944-6, 146 pg. https://dinamar.tragsa.es/pdfs/caminitos%20de%20agua-itinerario.pdf - last accessed 22/01/2025.
Fernández Escalante, A.E. & Senent del Álamo, M. (2011). Nuevos estudios sobre la evolución de la Zona No Saturada en las inmediaciones de canales y balsas de gestión de la recarga del acuífero de los Arenales basados en las estaciones DINA-MAR ZNS “New studies on the evolution of the Unsaturated Zone in the vicinity of canals and recharge management ponds of the Los Arenales aquifer based on the DINA-MAR ZNS stations”. Studies of the unsaturated zone of the soil, Vol X. Salamanca (Spain), 2011, October, 19-21. Pg. 315-320. ISBN 978-84-694-6642-1.
Fernández Escalante, A.E. (2013). Practical criteria in the design and maintenance of MAR facilities in order to minimise clogging impacts obtained from two different operative sites in Spain. In: Martin R (ed.) Clogging issues associated with managed aquifer recharge methods. IAH Commission on Managing Aquifer Recharge. 119-154.
Fernández Escalante, A.E., Grupo Tragsa. (2014). 2002-2012, Una década de la recarga gestionada. Acuífero de la Cubeta de Santiuste (Castilla y León) (2002-2012, “A decade of managed recharge. Cubeta de Santiuste Aquifer (Castile and Leon)”. Ed. Tragsa. April 2014. Hidrogeología hoy. ISBN 84-616-8910-0. 298 pg. https://dinamar.tragsa.es/pdf/IF-hh7-v34c.pdf - last accessed 22/01/2025.
Fernández-Escalante, A.E., Prieto Leache, I. (2013). Los procesos colmatantes en dispositivos de gestión de la recarga de acuíferos y empleo de la termografía para su detección y estudio. Un ensayo metodológico en el acuífero “Los Arenales”, España. “The clogging processes in aquifer recharge management devices and the use of thermography for their detection and study. A methodological test in the “Los Arenales” Aquifer, Spain”. Bol. Soc. Geológica Mex. 65, 51–69. http://dx.doi.org/10.18268/BSGM2013v65n1a5 - last accessed 22/01/2025.
Fernández-Escalante, A.E., San Sebastian Sauto, J. (2019). Clogging map for Santiuste basin MAR site, Los Arenales Aquifer, Spain. Multivariable analysis to correlate types of clogging and groundwater quality, in: Managed Aquifer Recharge: Local Solutions to the Global Water Crisis - Proceedings of the Symposium ISMAR 10. Madrid, Spain, pp. 450–463. https://dinamar.tragsa.es/file.axd?file=/PDFS/ISMAR10-proceedings-book_EF.pdf - last accessed 22/01/2025.
Fernández-Escalante, A.E & López-Gunn, E. (2021). Co-managed aquifer recharge: Case studies from Castilla y León (Spain), in: The Role of Sound Groundwater Resources Management and Governance to Achieve Water Security (Series III), Global Water Security Issues (GWSI) Series. UNESCO Publishing, Paris. https://unesdoc.unesco.org/ark:/48223/pf0000379093 - last accessed 22/01/2025.
UN (2022) Concept Note on the Water Action Agenda, Version 1 November 2022. Available from https://sdgs.un.org/conferences/water2023/action-agenda, - last access 15-12-2024
Gómez-Espín, J.M. (2019). Modernización de regadíos en España: experiencias de control, ahorro y eficacia en el uso del agua para riego “Modernisation of irrigation in Spain: experiences of control, savings and efficiency in the use of water for irrigation”. Agua Territorio 69–76. https://doi.org/10.17561/at.13.3972 - last accessed 22/01/2025.
Green, W.H. and G. Ampt. (1911). Studies of soil physics, part I – the flow of air and water through soils. Physical Hydrology for Ecosystems. BEE 3710 J. Ag. Sci. 4:1-24.
Guyennon, N., Salerno, F., Portoghese, I., Romano, E. (2017). Climate Change Adaptation in a Mediterranean Semi-Arid Catchment: Testing Managed Aquifer Recharge and Increased Surface Reservoir Capacity. Water 9, 689. https://doi.org/10.3390/w9090689 - last accessed 22/01/2025.
Hantush, M. S. (1959). Nonsteady flow to flowing wells in leaky aquifers, J. Geophys. Research, 64, 1043-1052.
Henao Casas, J.D.; Fernández Escalante, A.E.; Calero Gil, R.; Ayuga, F. (2022). Managed Aquifer Recharge as a Low-Regret Measure for Climate Change Adaptation: Insights from Los Arenales, Spain. Water 2022, 14, 3703. https://doi.org/10.3390/w14223703 - last accessed 22/01/2025.
Henao Casas, J. D., Fernández Escalante, A.E., Ayuga, F. (2022). Alleviating drought and water scarcity in the Mediterranean region through managed aquifer recharge. Hydrogeol J 30, 1685–1699. https://doi.org/10.1007/s10040-022-02513-5 - last accessed 22/01/2025.
Henao Casas, J.D. (2023). Managed aquifer recharge as a low-regret measure for climate change adaptation. Doctoral Thesis. https://oa.upm.es/73999/ - last accessed 22/01/2025.
Hvorslev, J.M. (1951). Time lag and soil permeability in ground water observations. Waterways Experiment Station Corps of Engineers, U.S. ARMY, Vol. 36, 50 p.
IGME. (1982). “Mapa Geológico de España.” Escala 1: 50.000. Sheets Olmedo (428), Arévalo (455), Navas de Oro (429), Nava de la Asunción (456). “Geological map of Spain”. 2nd Serie. CGS-IMINSA.
IGME (2000). Identificación de acciones y programación de actividades de recarga artificial de acuíferos en las cuencas intercomunitarias “Identification of actions and programming of activities for artificial recharge of aquifers in intercommunity basins”. Sahún, B, and Mudillo, J.M., Eds. ISBN 84-7840-390-6.
IGME (2015). SlugIn 1. 0. Aplicación para la interpretación de ensayos Slug. Manual de usuario. “Slug test interpretation application. User’s manual” ISBN on line: 978-84-7840-984-6. https://www.igme. es/productos_descargas/aplicaciones/Manual_SlugIn.pdf - last accessed 22/01/2025.
IMKO (2016). TRIME®-pico32/63. Sensors with internal TDRelectronics. IMKO GmbH. www.IMKO.de - last accessed 22/01/2025.
IMTA (2017). (EDs) Fernández-Escalante, A.E. and San Sebastián Sauto, J. La recarga gestionada en el acuífero Los Arenales, Castilla y León, España. Soluciones tecnológicas aplicadas al desarrollo rural. Manejo de la recarga de acuíferos: un enfoque hacia Latinoamérica, chapter 22 “Managed recharge in the Los Arenales aquifer, Castilla y León, Spain. Technological solutions applied to rural development. Aquifer recharge management: an approach to Latin America”. IMTA, Mexico.
IRYDA (1991). Proyecto de Asistencia Técnica para el Estudio Hidrogeológico de la Cubeta de Santiuste, Segovia “Technical Assistance Project for the Hydrogeological Study of the Cubeta de Santiuste, Segovia”. Unpublished technical report available for consultancy at MAPA library). IRYDA-ITGE.
ISO (2012). Geotechnical investigation and testing - Geohydraulic testing - Part 2: Water permeability tests in a borehole using open systems. International Standard ISO 22282-2:2012. https://cdn.standards.iteh.ai/samples/57723/494adfa282064001a04007b3c0296d71/ISO-22282-2-2012.pdf
ITACYL (2020). Plan de Monitorización de los Cultivos de Regadío en Castilla y León - Resultados de la Encuesta de Cultivos con Datos Acumulados de las Campañas Agrícolas 2011-2018 “Plan for Monitoring Irrigated Crops in Castile and León - Results of the Crop Survey with Accumulated data from the 2011 2018 Agricultural Campaigns”. Instituto Tecnológico y Agrario de Castilla y León, Valladolid, Spain. https://www.inforiego.org/opencms/opencms/seguimiento_regadio/index.html - last accessed 22/01/2025.
Johnson, R.A., & Wichern, D.W. (2007). Applied Multivariate Statistical Analysis (6th ed.). Pearson Prentice Hall. ISBN 10: 0-13-187715-1.
Kostiakov, A. N. (1932). The dynamics of the coefficients of water percolation in soils and the necessity for studying it from a dynamic point of view for purpose of amelioration. Society of Soil Sci. 14: 17-21.
Kraijenhoff Van de Leur, D.A. (1958). A study of non-steady groundwater flow with special reference to a reservoir-coefficient. De Ingenieur (40), 87-94 (18) (PDF) Measuring and estimating water table level and drainage discharge rate in unsteady flow state. Available from: https://www.researchgate.net/publication/353480126_Measuring_and_estimating_water_table_level_and_drainage_discharge_rate_in_unsteady_flow_state - last accessed 22/01/2025.
Lewis, M. R. (1937). The rate of infiltration of water in irrigation practice. EOS Trans., American Geophysical Union 18: 361-368.
Lippera, M. C., Werban, U., & Vienken, T. (2023). Application of physical clogging models to Managed Aquifer Recharge: a review of modelling approaches from engineering fields. Acque Sotterranee - Italian Journal of Groundwater, 12(3), 9–20. https://doi.org/10.7343/as-2023-681 - last accessed 22/01/2025.
López Gunn, E., Rica, M., Zorrilla-Miras, P., Vay, L., Mayor, B., Pagano, A., Altamirano, M., Giordano, R. (2021). The natural assurance value of nature-based solutions: A layered institutional analysis of socio ecological systems for long term climate resilient transformation. Ecological Economics 186, 107053. https://doi.org/10.1016/j.ecolecon.2021.107053 - last accessed 22/01/2025.
Lopez-Gunn, E. (2021). Combining social network analysis and agentbased model for enabling nature-based solution implementation: The case of Medina del Campo (Spain). Science of the total environment 801, 149734. https://doi.org/10.1016/j.scitotenv.2021.149734 - last accessed 22/01/2025.
MAPA (1999). Proyecto de recarga del acuífero de la Cubeta de Santiuste de San Juan Bautista (Segovia) “Project on the recharge of the Cubeta de Santiuste de San Juan Bautista aquifer (Segovia”. Secretaría General de Desarrollo Rural-Tragsatec. Unpublished technical report available for consultancy at MITECO´s library.
MAPA (2005). Asistencia técnica para el seguimiento y modelización de la recarga artificial en la cubeta de Santiuste de San Juan Bautista, Segovia “Technical assistance for the monitoring and modelling of artificial recharge in the Santiuste de San Juan Bautista basin, Segovia”. DGDR-TRAGSATEC (Unpublished Technical report available for consultancy in MAPA´s library).
MAPA (2009). Segunda asistencia técnica para el seguimiento y modelización de la recarga artificial en la cubeta de Santiuste de San Juan Bautista (Segovia). “Second technical assistance for the monitoring and modelling of artificial recharge in the Santiuste de San Juan Bautista basin (Segovia)”. Technical report available in MAPA´s library for public consultancy.
MIMAM (2002). Estudio del sistema de utilización conjunta de los recursos hídricos superficiales y subterráneos de las cuencas del Cega-Pirón y del Adaja- Eresma. “Study of the system of conjunctive use of surface and groundwater resources in the Cega-Piron and Adaja-Eresma basins”. MIMAM-PROINTEC.
MOPTMA (1994). Informe sobre la posibilidad de recarga artificial en la Cubeta de Santiuste (Segovia) “Report on the possibility of artificial recharge in the Santiuste basin (Segovia, Spain)”. Unpublished Technical report available for consultancy at MITECO´s library. Servicio Geológico de Obras Públicas, SGOP.
MAPAMA (2008). Gestión de la recarga de acuíferos: su implicación en la lucha contra la desertificación. Tipologías y dispositivos de recarga artificial “Management of aquifer recharge: its implication in the fight against desertification. Types and devices for artificial recharge”. https://www.miteco.gob.es/es/biodiversidad/temas/desertificacionrestauracion/0904712280144db8_tcm30-152640.pdf
MARSOL (2016a). MARSOL: Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought - Appropriate MAR methodology and tested knowhow for the general rural development (No. D5.3). MARSOL, Madrid, Spain. https://dinamar.tragsa.es/file.axd?file=/PDFS/marsol_d5-3_martechnology_20160731.pdf - last accessed 22/01/2025.
MARSOL Fernández-Escalante, A.E., Calero Gil, R., Villanueva Lago, M., San Sebastián Sauto, J. (2016b). Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought (MARSOL). Managed Aquifer Recharge to Combat Groundwater Overexploitation at the Los Arenales Site, Castilla y León, Spain (No. D5.4). MARSOL, Madrid, Spain. https://dinamar.tragsa.es/file.axd?file=/PDFS/marsol_d5-4_arenales-final.pdf - last accessed 22/01/2025.
MARSOLut (2021). MARSoluT Periodic report, period 01.02.2019-28.02.2021. 1.2.4 WP 4 Optimizing Design (responsible: Enrique Fernández Escalante, Tragsa).
MARSOLUT. Fernández Escalante, A.E; Henao Casas, J.D., Calero Gil, R., San Sebastián Sauto, J., Wefer-Roehl, A., Schüth, C., Ayuga, F., Behle, V.R. and Sapiano, M. (2023a). Report on improving water quality at active MAR sites in Spain. MARSoluT, Deliverable 4.3. https://dinamar.tragsa.es/file.axd?file=/PDFS/d4.3final.pdf - last accessed 22/01/2025.
MARSOLUT. Henao Casas, JD., Fernández Escalante, A.E., Ayuga, F., Standen, K., Costa, L., Monteiro, JP., Vlassopoulou, A., Kallioras, A., Caligaris, E., Rossetto, R., Rudnik, G., Kurtzman, D., Sapiano, M. and Wefer-Roehl, A. (2023b). Report on the performance of optimal MAR designs. MARSOLut, deliverable 4-4, 2023. https://dinamar.tragsa.es/file.axd?file=/PDFS/d4.4final.pdf - last accessed 22/01/2025.
Matsuo, S. & Akai, K. (1952). A Field Determination of Permeability. https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/280266/1/mfeku_14_4_225.pdf - last accessed 22/01/2025.
McGill, R., Tukey, J.W., Larsen, W.A. (1978). “Variations of Box Plots”. The American Statistician. 32 (1): 12–16. DOI: 10.2307/2683468.JSTOR2683468
METER (2016). Hydros 21 integrator guide. https://library.metergroup.com/Integrator%20Guide/18281_HYDROS21(CTD)_GEN1.pdf - last accessed 22/01/2025.
MOPTMA (1993). Estudio de caracterización de la unidad hidrogeológica “Región de Los Arenales” (02.17). “Characterisation study of the hydrogeological unit “Región de Los Arenales”. Report 2884. Servicio Geológico. Dirección General de Obras Hidráulicas.
Neuman, S.P. (1975). Analysis of pumping test data from anisotropic unconfined aquifers considering delayed yield, Water Resources Research, vol. 11, no. 2, pp. 329-342.
PHD (2016). Douro River Water Basin Plan. Spanish Official Bulletin BOE 16 Tuesday 19th of January of 2016 Sec. I. Pages. 3371-3372. Rodgers, J.L., & Nicewander, W.A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42, 59-66. DOI: 10.1080/00031305.1988.10475524 - last accessed 22/01/2025.
Sanz Montero, M.E, Arroyo, X., Cabestrero, O., Calvo, J.P., Fernández-Escalante, A.E., Fidalgo, C., García-del-Cura, M.A., García-Avilés, J., González-Martín, J.A., Rodríguez-Aranda, J.P., Rovira, J.V. (2013). Procesos de sedimentación y biomineralización en la laguna alcalina de las Eras. Humedal Coca-Olmedo “Sedimentation and biomineralisation processes in the alkaline lagoon of Las Eras (Coca- Olmedo Wetland)”. Geogaceta 53. ISSN 0213-683X.
SDEC (2006). Tensiometer with “Bourdon” manometer SR 1000. Soils Studies. http://www.sdec-france.com - last accessed 22/01/2025.
SDEC (2008). Humidimetre de sol. soil moisture sensor HMS 9000.
SDEC France - Z.I de la Gare -37 310- Reignac sur Indre (France). http://www.sdec-france.com - last accessed 22/01/2025.
Terzaghi, K. and Peck, RB. (1967). Technology & Engineering. 752 pages. Ed. John Wiley & Sons. New York.
Theis, C.V. (1935). The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage, Trans. Am. Geophys. Union, 16, 519–524, 1935.
Thiem, A. (1906). Bericht über die Vorarbeiten zur Erweiterung der Wasserversorgung der Stadt Leipzig, 23 p., Leipzig, Thiem & Söhne, 1906.
Tragsa (2008). Proyecto de obra de las estaciones DINA-MAR ZNS. (DINA-MAR ZNS stations construction site Project). Tragsa Group. https://dinamar.tragsa.es/post/Instalacion-de-las-estaciones-Dina-Mar-de-Santiuste-y-Coca-(Segovia) - last accessed 22/01/2025.
Tragsa (2015). MARSOL 5-1 Deliverable. Los Arenales demonstration site characterisation. Report on the Los Arenales pilot site
improvements (Restricted deliverable).
WEB SITES
Meteo data:
Inforiego. Station SG02, Nava de la Asunción. https://www.inforiego.org/opencms/opencms/info_meteo/index.html - last accessed 22/01/2025.
General information:
IAH. Commission on Managing Aquifer Recharge. International Association of Hydrogeologists. https://recharge.iah.org - last accessed 22/01/2025.
MARSOLUT project web site. www.marsolut-itn.eu - last accessed 22/01/2025.
DINAMAR. www.dinamar.tragsa.es - last accessed 22/01/2025.

Supporting Agencies

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 814,066 (Managed Aquifer Recharge Solutions Training Network - MARSoluT).

How to Cite



Ranking multiple infiltration formulas to determine their match to trustable hydrogeological parameters obtained under highly controlled conditions. Santiuste basin, Los Arenales Living Lab, Spain. (2025). Acque Sotterranee - Italian Journal of Groundwater, 14(2). https://doi.org/10.7343/as-2025-817