Heat transport modeling for the design of a low enthalpy open-loop system


Submitted: 26 June 2012
Accepted: 15 March 2016
Published: 30 December 2012
Abstract Views: 775
PDF: 1370
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

A case study of hydrogeological characterization and heat transport modeling for the design of a low enthalpy system in the Province of Treviso (Italy) is here presented. It is an open loop system that pumps and re-injects groundwater from a confined aquifer of the high Veneto plain. This type of systems is the most efficient in terms of yield, but its construction is highly conditioned by the availability of groundwater resource and by the environmental laws related to groundwater exploitation. Groundwater flow modeling with MODFLOW 2005 led to a good aquifer parameters estimation, by means of the quantitative calibration of a pumping test made on the pumping well and an observation piezometer. Then, with the heat transport modeling with SEAWAT 4 the distance between pumping well and re-injecting well has been optimized, avoiding so the thermal feedback effect. The lack of sitespecific data for dispersivity parameters has been solved through a sensitivity analysis on the main dispersivity parameters of heat transport. Finally, in order to comply with the environmental laws, a long-term forecasting simulation (duration of 20 years) has been set up in order to evaluate the open loop system thermal impact on the aquifer. The obtained results put in evidence that the design of low enthalpy systems strongly needs a detailed hydrogeological characterization of the aquifer interested by the pumping and that numerical modeling is the most effective tool in support of the definition of the optimal distance between pumping and re-injecting wells in the open loop systems.

Piccinini, L., Vincenzi, V., Pontin, A., & Tonet, F. (2012). Heat transport modeling for the design of a low enthalpy open-loop system. Acque Sotterranee - Italian Journal of Groundwater, 1(3). https://doi.org/10.7343/as-011-12-0030

Downloads

Download data is not yet available.

Citations