Original Papers
30 September 2025

Integrated assessment of groundwater quality in the Mitidja Plain (Algeria) using Moran’s I Spatial Analysis, Groundwater Pollution Index, and Entropy-Weighted Water Quality Index in support of artificial recharge planning

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
0
Views
0
Downloads

Authors

Monitoring the quality of groundwater intended for the drinking water supply in the Mitidja aquifer is a key element of the preliminary feasibility study into recharging the aquifer with treated wastewater. The degradation of the aquifer is due to infiltration water from irrigation and industrial discharges, as well as marine intrusion. As part of the study, 49 water points were monitored throughout 2019. Sampling campaigns covered 26 points during the high-water period and 23 points during the low-water period. The chemical analysis of the collected samples focused on major ions and physical parameters. For this article, two quality indices were used: the Groundwater Pollution Index (GPI) and the Entropy Water Quality Index (EWQI), which were applied to the two seasons studied (high and low water). The spatial extent of pollution was assessed using ordinary kriging (OK) and an interpolation technique based on the Moran’s I index. The results revealed strong autocorrelation for the hydrochemical parameters Cl, SO42−, EC, and TDS using Moran’s I index during the wet season and for Cl, SO42−, TH, and TDS during the dry season. This indicates strong spatial dependence with a confidence level ranging from 99% to 90% (P<0.01 and P<0.1). Groundwater quality estimated from the GPI shows 3.8% and 17.4% as “high pollution” and 38.4% and 43.4% as “moderate pollution” in the wet and dry seasons, respectively. The cumulative percentages of waters classified as having “insignificant pollution” or “low pollution” were found to be 57.6% and 49.1% for the wet and dry seasons, respectively. Similarly, 76.9% and 65.1% of groundwater falls into the "excellent" to "good" quality classes for consumption according to the entropy index (EWQI), while 23% and 30.4% belong to the ‘medium’ quality class for the wet and dry seasons, respectively. An increase in GPI and EWQI concentration levels was observed during the dry season. This increase was observed in the far western area, characterised by agricultural land use, and in the far eastern area, which is highly urbanised and densely populated and corresponds to the Rouiba industrial zone. It is imperative that actions are urgently implemented to detect and control pollution sources before the aquifer is artificially recharged, in order to prevent any additional risk of contamination.

Altmetrics

Downloads

Download data is not yet available.

Citations

Abaidia, S., Remini, B., & Ezziane, K. (2025). Integrated groundwater suitability analysis for irrigation purposes: A case study from the Middle Cheliff plain, Algeria. Glasnik Srpskog geografskog drustva, 105(1), 235-254. https://doi.org/10.2298/GSGD2501235A DOI: https://doi.org/10.2298/GSGD2501235A
Adimalla, N. (2020). Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: an approach of water quality index (WQI) and health risk assessment (HRA). Environmental Geochemistry and Health, 42(6): 1725–1752. Springer. https://doi.org/10.1007/S10653-019-00374-8/METRICS DOI: https://doi.org/10.1007/s10653-019-00374-8
Adimalla, N., Li, P., and Venkatayogi, S. (2018). Hydrogeochemical Evaluation of Groundwater Quality for Drinking and Irrigation Purposes and Integrated Interpretation with Water Quality Index Studies. Environmental Processes, 5(2): 363–383. Springer Basel. https://doi.org/10.1007/S40710-018-0297-4/METRICS DOI: https://doi.org/10.1007/s40710-018-0297-4
Adimalla, N., and Qian, H. (2019). Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicology and Environmental Safety, 176: 153–161. Academic Press. https://doi.org/10.1016/J.ECOENV.2019.03.066 DOI: https://doi.org/10.1016/j.ecoenv.2019.03.066
Adimalla N., Qian H.& Li P. (2019 a). Entropy water quality index and probabilistic health risk assessment from geochemistry of groundwaters in hard rock terrain of Nanganur County, South India, Geochemistry (2019). https://doi.org/10.1016/j.chemer.2019.125544 DOI: https://doi.org/10.1016/j.chemer.2019.125544
Agidi, B.M., Akakuru, O.C., Aigbadon, G.O., Schoeneich, K., Isreal, H., Ofoh, I., Njoku, J., and Esomonu, I. (2024). Water quality index, hydrogeochemical facies and pollution index of groundwater around Middle Benue Trough, Nigeria. International Journal of Energy and Water Resources, 8(1): 35–54. Springer. https://doi.org/10.1007/S42108-022-00187-Z DOI: https://doi.org/10.1007/s42108-022-00187-z
Ahmed, I., Tariq, N., and Al Muhery, A. (2019). Hydrochemical characterization of groundwater to align with sustainable development goals in the Emirate of Dubai, UAE. Environmental Earth Sciences, 78(1): 1–17. Springer Verlag. https://doi.org/10.1007/S12665-018-8030-1/METRICS DOI: https://doi.org/10.1007/s12665-018-8030-1
Akakuru, O.C., Eze, C.U., Okeke, O.C., Opara, A.I., Usman, A.O., Iheme, O., Ibeneme, S.I., and Iwuoha, P.O. (2022). Hydrogeochemical evolution, water quality indices, irrigation suitability and pollution index of groundwater (PIG) around eastern Niger Delta, Nigeria. International Journal of Energy and Water Resources, 6(3): 389–411. Published by International Journal of Energy and Water Resources. https://doi.org/10.1007/S42108-021-00162-0 DOI: https://doi.org/10.1007/s42108-021-00162-0
Agrouche S. Mansouri Z. Reghais A. Kardache R. Dinar H. Abdelkader L. 2024. Assessment of Groundwater Quality for Irrigation and Drinking Using Water Quality Indexes in the Upper Sebaou Valley (Tizi Ouzou-eastern Algeria) Jordan Journal of Earth & Environmental Sciences, 2025, vol. 16, no 1.
Al-Aizari, H.S., Aslaou, F., Al-Aizari, A.R., Al-Odayni, A.B., and Al-Aizari, A.J.M. (2023a). Evaluation of Groundwater Quality and Contamination Using the Groundwater Pollution Index (GPI), Nitrate Pollution Index (NPI), and GIS. Water 2023, Vol. 15, Page 3701, 15(20): 3701. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/W15203701 DOI: https://doi.org/10.3390/w15203701
Al-Aizari HS, Ghfar AA, Al-Aizari AR, Al-Aizari A-JM, Moshab MS, Sillanpää M. (2023b). Assessing Groundwater Quality and Diagnosing Nitrate Pollution in the Sidi Allal Region: A GIS-Based Approach Utilizing the Groundwater Pollution Index. Hydrology. 10(12):227. https://doi.org/10.3390/hydrology10120227 DOI: https://doi.org/10.3390/hydrology10120227
Amiri, V., Rezaei, M., and Sohrabi, N. (2014). Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran. Environmental Earth Sciences, 72(9): 3479–3490. Springer Verlag. https://doi.org/10.1007/S12665-014-3255-0/METRICS DOI: https://doi.org/10.1007/s12665-014-3255-0
Aziez, O., Remini, B., Habi, M., Ammari.A. (2018). Assessment of groundwater contamination by different interpolation methods for water resource management in the Mitidja plain aquifer (North-Central Algeria). Desalination and Water Treatment 132(1s):167-178. https://doi.org/10.5004/dwt.2018.22921 DOI: https://doi.org/10.5004/dwt.2018.22921
Bahir, M., Ouhamdouch, S., Carreira, P.M., and Zouari, K. (2019). Relationship Between Hydrochemical Variation and the Seawater Intrusion Within Coastal Alluvial Aquifer of Essaouira Basin (Morocco) Using HFE-Diagram. Advances in Science, Technology and Innovation,: 195–197. Springer, Cham. https://doi.org/10.1007/978-3-030-01572-5_47 DOI: https://doi.org/10.1007/978-3-030-01572-5_47
Belkendil A., Habi M., Yakhlefoune M., Sarra A., Mekkaoui A., Tariq A., Zineb M. (2025). Integrated GIS-Based approach for groundwater potential mapping in Arid Regions: A case study of Kenadsa-Bechar using AHP and frequency ratio methods. Groundw Sustain Dev 101461. https://doi.org/10.1016/j.gsd.2025.101461 DOI: https://doi.org/10.1016/j.gsd.2025.101461
Bouderbala, A. (2018). Effects of Climate Variability on Groundwater Resources in Coastal Aquifers (Case of Mitidja Plain in the North Algeria). 43–51. Springer, Cham. https://doi.org/10.1007/978-3-319-69356-9_6 DOI: https://doi.org/10.1007/978-3-319-69356-9_6
Boufekane, A., Yahiaoui, S., Meddi, H., Meddi, M., and Busico, G. (2022). Modified DRASTIC index model for groundwater vulnerability mapping using geostatistic methods and GIS in the Mitidja plain area (Algeria). Environmental Forensics, 23(5–6): 539–556. Taylor & Francis. https://doi.org/10.1080/15275922.2021.1913674 DOI: https://doi.org/10.1080/15275922.2021.1913674
Brella, D., Belkhiri, L., Tiri, A., Salhi, H., Lakouas, F.E., Nouibet, R., Amrane, A., Merdoud, R., and Mouni, L. (2023). Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria. Hydrology 2023, Vol. 10, Page 171, 10(8): 171. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/HYDROLOGY10080171 DOI: https://doi.org/10.3390/hydrology10080171
Broers, H.P., and Van Der Grift, B. (2004). Regional monitoring of temporal changes in groundwater quality. Journal of Hydrology, 296(1-4): 192–220. Elsevier. https://doi.org/10.1016/J.JHYDROL.2004.03.022 DOI: https://doi.org/10.1016/j.jhydrol.2004.03.022
Chaudhari, U., Kumari, D., Mittal, S., Sahoo, P.K. (2025). GISBased Spatial Autocorrelation and Multivariate Statistics for Understanding Groundwater Uranium Contamination and Associated Health Risk in Semiarid Region of Punjab, India. Water 2025, 17, 2064. https://doi.org/10.3390/ w17142064 DOI: https://doi.org/10.3390/w17142064
Clemens, M., Khurelbaatar, G., Merz, R., Siebert, C., van Afferden, M., and Rodiger, T. (2020). Groundwater protection under water scarcity; from regional risk assessment to local wastewater treatment solutions in Jordan. Sci. Total Environ. 706, 136066. https://doi.org/10.1016/j.scitotenv.2019.136066 DOI: https://doi.org/10.1016/j.scitotenv.2019.136066
Cliff, A. D., & Ord, K. (1970). Spatial autocorrelation: a review of existing and new measures with applications. Economic Geography, 46(sup1), 269-292. DOI: https://doi.org/10.2307/143144
Dalale Khous, Ait-amar, H., Belaid, M., and Chorfi, H. (2019). Geochemical and Isotopic Assessment of Groundwater Quality in the Alluvial Aquifer of the Eastern Mitidja Plain. Water Resources, 46(3): 443–453. Pleiades Publishing. https://doi.org/10.1134/S0097807819030060 DOI: https://doi.org/10.1134/S0097807819030060
Djoudar/hallal, D., Zahouani, S., and Khaldi, A. (2018). Application of the GALDIT Method to the Study of Groundwater Vulnerability of the East Mitidja Alluvial Waters. Advances in Science, Technology and Innovation, 677–680. Springer, Cham. https://doi.org/10.1007/978-3-319-70548-4_200 DOI: https://doi.org/10.1007/978-3-319-70548-4_200
Djoudar D, Toubal A. (2014). Etat actuel de l’invasion marine dans la baie d’Alger “Current state of marine invasion in the Bay of Algiers” Production scientifique-Communications, 1. https://www.iwra.org/congress/2008/resource/authors/abs142_ article.pdf
Egbueri, J.C., Ameh, P.D., and Unigwe, C.O. (2020). Integrating entropy-weighted water quality index and multiple pollution indices towards a better understanding of drinking water quality in Ojoto area, SE Nigeria. Scientific African, 10: e00644. Elsevier. https://doi.org/10.1016/J.SCIAF.2020.E00644 DOI: https://doi.org/10.1016/j.sciaf.2020.e00644
El Morabet, R., Barhazi, L., Khan, R.A., Hejjaj, A., Harrara, R., Bouhafa, S., Khan, A.R., Khan, N.A., and Yeremenko, S. (2021). Study of seasonal variation and index based assessment of water quality and pollution in semi-arid region of morocco. Ecological Questions, 32(4). Nicolaus Copernicus University. doi:10.12775/EQ.2021.037.
El Mountassir, O., Bahir, M., Ouazar, D., Ouhamdouch, S., Chehbouni,
A., and Ouarani, M. (2020). The use of GIS and water quality index to assess groundwater quality of krimat aquifer (Essaouira; Morocco). SN Applied Sciences, 2(5). Springer Nature. https://doi.org/10.1007/s42452-020-2653-z DOI: https://doi.org/10.1007/s42452-020-2653-z
Gad, M., Gaagai, A., Agrama, A.A., El-Fiqy, W.F.M., Eid, M.H., Szűcs, P., Elsayed, S., Elsherbiny, O., Khadr, M., Abukhadra, M.R., Alfassam, H.E., Bellucci, S., and Ibrahim, H. (2024). Comprehensive evaluation and prediction of groundwater quality and risk indices using quantitative approaches, multivariate analysis, and machine learning models: An exploratory study. Heliyon, 10(17): e36606. https://doi.org/10.1016/j.heliyon.2024.e36606 DOI: https://doi.org/10.1016/j.heliyon.2024.e36606
Gao, Y., Qian, H., Ren, W., Wang, H., Liu, F., and Yang, F. (2020). Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. Journal of Cleaner Production, 260: 121006. Elsevier. https://doi.org/10.1016/J.JCLEPRO.2020.121006 DOI: https://doi.org/10.1016/j.jclepro.2020.121006
Gorgij, A.D., Kisi, O., Moghaddam, A.A., and Taghipour, A. (2017). Groundwater quality ranking for drinking purposes, using the entropy method and the spatial autocorrelation index. Environmental Earth Sciences, 76(7). Springer Verlag. https://doi.org/10.1007/s12665-017-6589-6 DOI: https://doi.org/10.1007/s12665-017-6589-6
Hallouz, F., Meddi, M., Mahe, G., Ali Rahmani, S.E., and Zettam, A. (2023). Hybrid Analysis of Rainfall Erosivity in Northern Algeria: Integrating Empirical and Modeling Approaches. Pure and Applied Geophysics, 180(11): 3995–4023. Birkhauser. https://doi.org/10.1007/S00024-023-03360-5/METRICS DOI: https://doi.org/10.1007/s00024-023-03360-5
He, W., Qian, F., Lam, J., Chen, G., Han, Q.L., and Kurths, J. (2015). Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica, 62: 249–262. Pergamon. https://doi.org/10.1016/J.AUTOMATICA.2015.09.028 DOI: https://doi.org/10.1016/j.automatica.2015.09.028
Islam, A.R.M.T., Ahmed, N., Bodrud-Doza, M., and Chu, R. (2017). Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics. Environmental Science and Pollution Research, 24(34): 26350–26374. Springer Verlag. https://doi.org/10.1007/s11356-017-0254-1 DOI: https://doi.org/10.1007/s11356-017-0254-1
Islam, A.R.M.T., Kabir, M.M., Faruk, S., Al Jahin, J., Bodrud-Doza, M., Didar-ul-Alam, M., Bahadur, N.M., Mohinuzzaman, M., Fatema, K.J., Safiur Rahman, M., and Choudhury, T.R. (2021). Sustainable groundwater quality in southeast coastal Bangladesh: co-dispersions, sources, and probabilistic health risk assessment. Environment, Development and Sustainability, 23(12): 18394–18423. Springer Science and Business Media B.V. http://doi:10.1007/S10668-021-01447-4/METRICS. DOI: https://doi.org/10.1007/s10668-021-01447-4
Khelfi, M. E. A., Hallal, D. D., Guastaldi, E., Alili, M., & Nadri, M. (2025). Assessment of the vulnerability and sensitivity of groundwater for drinking water supply and irrigation: The case of the Mitidja alluvial aquifer (Northern Algeria). Geomatics, Landmanagement and Landscape, 119-145. https://doi.org/10.15576/GLL/200413 DOI: https://doi.org/10.15576/GLL/200413
Kawachi, T., Maruyama, T., and Singh, V.P. 2001. Rainfall entropy for delineation of water resources zones in Japan. Journal of Hydrology, 246(1–4): 36–44. Elsevier. https://doi.org/10.1016/S0022-1694(01)00355-9 DOI: https://doi.org/10.1016/S0022-1694(01)00355-9
Kerboub, D., Fehdi, C., El hmaidi, A., Ousmana, H., Azzi, Y., and Khemissi, C. (2023). Pig based water quality assessment in El-Hai River Basin, Elkantara Plain, Algeria. Journal of Fundamental and Applied Sciences, 14(1): 26–59. African Journals Online (AJOL). https://doi.org/10.4314/jfas.v14i1.2 DOI: https://doi.org/10.4314/jfas.v14i1.2
Kumar, P.J.S., Augustine, C.M. (2022). Entropy-weighted water quality index (EWQI) modeling of groundwater quality and spatial mapping in Uppar Odai Sub-Basin, South India. Model. Earth Syst. Environ. 8, 911–924 https://doi.org/10.1007/s40808-021-01132-5 DOI: https://doi.org/10.1007/s40808-021-01132-5
Leulmi, S.M., Aidaoui, A., Hallal, D.D., Khelfi, M.A., Ferraira, J.P.L., Ammari, A., and Aziez, O. (2021). Spatio-temporal analysis of nitrates and piezometric levels in groundwater using geostatistical approach: case study of the Eastern Mitidja Plain, North of Algeria. Arabian Journal of Geosciences, 14(5): 1–15. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/S12517-021-06642-1/METRICS DOI: https://doi.org/10.1007/s12517-021-06642-1
Li, C., Gao, Z., Chen, H., Wang, J., Liu, J., Li, C., Teng, Y., Liu, C., and Xu, C. (2021). Hydrochemical analysis and quality assessment of groundwater in southeast North China Plain using hydrochemical, entropy-weight water quality index, and GIS techniques. Environmental Earth Sciences, 80(16): 1–15. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/S12665-021-09823-Z/METRIC . DOI: https://doi.org/10.1007/s12665-021-09823-z
Li, X., Wang, K., Liuz, L., Xin, J., Yang, H., and Gao, C. (2011). Application of the Entropy Weight and TOPSIS Method in Safety Evaluation of Coal Mines. Procedia Engineering, 26: 2085–2091. No longer published by Elsevier. https://doi.org/10.1016/J.PROENG.2011.11.2410 DOI: https://doi.org/10.1016/j.proeng.2011.11.2410
Madene, E., Boufekane, A., Derardja B., Busico, G., Meddi, M. (2023). The influence of lithology and climatic conditions on the groundwater quality in the semi-arid-regions: case study of the Eastern Middle Cheliff alluvial aquifer (north-western Algeria) Acque Sotterranee - Italian Journal of Groundwater, 12(4) https://doi.org/10.7343/as-2023-671 DOI: https://doi.org/10.7343/as-2022-671
Meng, F., Liang, X., Xiao, C., and Wang, G. (2021). Integration of GIS, improved entropy and improved catastrophe methods for evaluating suitable locations for well drilling in arid and semi-arid plains. Ecological Indicators, 131. Elsevier B.V. http:// https://doi.org/10.1016/j.ecolind.2021.108124 DOI: https://doi.org/10.1016/j.ecolind.2021.108124
Mohammadi, A., Mansour, S. N., Faraji, M., Abdolahnejad, A., Toolabi, A., & Miri, M. (2020). A protocol for pollution index, source identification, and spatial analysis of heavy metals in top soil. Journal of Environmental Health and Sustainable Development. 5(4) https://doi.org/10.18502/jehsd.v5i4.4965 DOI: https://doi.org/10.18502/jehsd.v5i4.4965
Moran, P. A. P. (1948). The Interpretation of Statistical Maps.” Journal of the Royal Statistical Society. Series B (Methodological), vol. 10, no. 2, pp. 243–51. JSTOR, http://www.jstor.org/stable/2983777. DOI: https://doi.org/10.1111/j.2517-6161.1948.tb00012.x
Moran, P.A.P. (1950). Some Theorems on Time Series: II The Significance of the Serial Correlation Coefficient. Biometrika, 35(3/4): 255. JSTOR. https://doi.org/10.2307/2332344 DOI: https://doi.org/10.2307/2332344
Morsli, B., Habi, M., & Bouchekara, B. (2017). Study of marine intrusion in coastal aquifers and its repercussions on the land degradation by the use of a multidisciplinary approach. LARHYSS Journal P-ISSN1112-3680/E-ISSN 2521-9782, (30), 225-237.
Moussaoui, Z., Ben Brahim, F., Hamdi, M., Hidouri, N., Younes, H., Bouri, S. (2025). Assessment of groundwater quality and soil salinization risks in the central Tunisia aquifer systems: water resources management and public health implicationsAcque Sotterranee - Italian Journal of Groundwater, 14(1), 47 - 62 https://doi.org/10.7343/as-2025-825 DOI: https://doi.org/10.7343/as-2025-825
National Office of Statistics ONS (2020). Statistical Directory of the wilaya of Algiers 2020. https://www.ons.dz/.
Nemer, Z., Khaldaoui, F., Benaissa, Z., Belaroui, A., Tebbouche, M.Y., and Ydri, A. (2023). Hydrogeophysical investigation of aquifer parameters and seawater intrusion: a case study from Eastern Mitidja plain, Algeria. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9(1): 1–19. Springer Science and Business Media Deutschland GmbH. http://10.1007/S40948-023-00610-7/FIGURES/11 DOI: https://doi.org/10.1007/s40948-023-00610-7
Nori-Sarma, A., Thimmulappa, R.K., Venkataramana, G. V., Fauzie, A.K., Dey, S.K., Venkareddy, L.K., Berman, J.D., Lane, K.J., Fong, K.C., Warren, J.L., and Bell, M.L. (2020). Lowcost NO2 monitoring and predictions of urban exposure using universal kriging and land-use regression modelling in Mysore, India. Atmospheric Environment, 226. Elsevier Ltd. https://doi.org/10.1016/j.atmosenv.2020.117395 DOI: https://doi.org/10.1016/j.atmosenv.2020.117395
Nourani, V., Ghaneei, P., and Kantoush, S.A. (2022). Robust clustering for assessing the spatiotemporal variability of groundwater quantity and quality. Journal of Hydrology, 604: 127272. Elsevier. https://doi.org/10.1016/J.JHYDROL.2021.127272 DOI: https://doi.org/10.1016/j.jhydrol.2021.127272
Ozkul, S., Harmancioglu, N.B., and Singh, V.P. (2000). Entropy-Based Assessment of Water Quality Monitoring Networks. Journal of Hydrologic Engineering, 5(1): 90–100. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:1(90) DOI: https://doi.org/10.1061/(ASCE)1084-0699(2000)5:1(90)
Pei-Yue, L., Hui, Q., and Jian-Hua, W. (2010). Groundwater Quality Assessment Based on Improved Water Quality Index in Pengyang County, Ningxia, Northwest China. Journal of Chemistry, 7(SUPPL. 1): S209–S216. John Wiley & Sons, Ltd. https://doi.org/10.1155/2010/451304 DOI: https://doi.org/10.1155/2010/451304
Prasanna, M. V., Chidambaram, S., Gireesh, T. V., and Ali, T.V.J. (2011). A study on hydrochemical characteristics of surface and sub-surface water in and around Perumal Lake, Cuddalore district, Tamil Nadu, South India. Environmental Earth Sciences, 63(1): 31–47. Springer Verlag. https://doi.org/10.1007/S12665-010-0664-6/METRICS DOI: https://doi.org/10.1007/s12665-010-0664-6
Quevauviller, P., Hinsby, K., Karlsson Seidenfaden, I., Pulido Velázquez, D., Sapiano, M., Coelho, R., Gattinesi, P., Hohenblum, P., Jirovsky, V., Marinheiro, F., Simas, L., Teixeira, R., Ugarelli, R., Cardarilli, M., Paraskevopoulos, S., Vrachimis, S., Medema, G., Eliades, D., La Vigna, F. (2024). Review: The Urban Water Security and Safety ParadoxAcque Sotterranee – Italian Journal of Groundwater, 13(3 ), 11 - 24 https://doi.org/10.7343/as-2024-775 DOI: https://doi.org/10.7343/as-2024-775
Radfard, M., Gholizadeh, A., Azhdarpoor, A., Badeenezhad, A., Mohammadi, A.A., and Yousefi, M. (2019). Health risk assessment to fluoride and nitrate in drinking water of rural residents living in the Bardaskan city, arid region, southeastern Iran. Desalination and Water Treatment, 145: 249–256. Elsevier. https://doi.org/10.5004/DWT.2019.23651 DOI: https://doi.org/10.5004/dwt.2019.23651
Rao, N.S., Sunitha, B., Rambabu, R., Rao, P.V.N., Rao, P.S., Spandana, B.D., Sravanthi, M., and Marghade, D. (2018). Quality and degree of pollution of groundwater, using PIG from a rural part of Telangana State, India. Applied Water Science, 8(8): 1–13. Springer Verlag. https://doi.org/10.1007/S13201-018-0864-X/TABLES/7 DOI: https://doi.org/10.1007/s13201-018-0864-x
Reza, R., and Singh, G. (2010). Assessment of Ground Water Quality Status by Using Water Quality Index Method in Orissa, India. World Applied Sciences Journal, 9(12): 1392–1397.
Sanad, H., Mouhir, L., Zouahri, A., Moussadek, R., El Azhari, H., Yachou, H., Ghanimi, A., Oueld Lhaj, M., and Dakak, H. (2024). Assessment of Groundwater Quality Using the Pollution Index of Groundwater (PIG), Nitrate Pollution Index (NPI), Water Quality Index (WQI), Multivariate Statistical Analysis (MSA), and GIS Approaches: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, Vol. 16, Page 1263, 16(9):1263. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/W16091263 DOI: https://doi.org/10.3390/w16091263
Sawyer, C.N., & McCarty, P. L. (1967). Chemistry for Sanitary Engineers. McGraw-Hill, New York. Shang, Y., You, B., & Shang, L. (2016). China’s environmental strategy towards reducing deep groundwater exploitation. https://doi.org/10.1007/s12665-016-6110-7 DOI: https://doi.org/10.1007/s12665-016-6110-7
Shannon, C.E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3): 379–423. John Wiley & Sons, Ltd. https://doi.org/10.1002/J.1538-7305.1948.TB01338.X DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Shyu, G.S., Cheng, B.Y., Chiang, C.T., Yao, P.H., and Chang, T.K. (2011). Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. International Journal of Environmental Research and Public Health, 8(4): 1084–1109. MDPI. https://doi.org/10.3390/ijerph8041084 DOI: https://doi.org/10.3390/ijerph8041084
Siddiqi, S.A., Al-Mamun, A., Baawain, M.S., and Sana, A. (2021). Groundwater contamination in the Gulf Cooperation Council (GCC) countries: a review. Environmental Science and Pollution Research, 28(17): 21023–21044. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/S11356-021-13111-5/METRICS DOI: https://doi.org/10.1007/s11356-021-13111-5
Siddique, M. A. B., Islam, A. R. M. T., Hossain, M. S., Khan, R., Akbor, M. A., Hasanuzzaman, M. & Bodrud-Doza, M. (2022). Multivariate statistics and entropy theory for irrigation water quality and entropy-weighted index development in a subtropical urban river, Bangladesh. Environmental Science and Pollution Research, 29(6), 8577-8596. https://doi.org/10.1007/s11356-021-16343-7 DOI: https://doi.org/10.1007/s11356-021-16343-7
Subba Rao, N. (2012). PIG: a numerical index for dissemination of groundwater contamination zones. Hydrological Processes, 26(22): 3344–3350. John Wiley & Sons, Ltd. https://doi.org/10.1002/HYP.8456 DOI: https://doi.org/10.1002/hyp.8456
Subba Rao, N. (2017). Hydrogeology: problems with solutions. PHI Learning Private Limited.
Subba Rao, N. (2018). Groundwater quality from a part of Prakasam District, Andhra Pradesh, India. Appl Water Sci 8, 30. https://doi.org/10.1007/s13201-018-0665-2 DOI: https://doi.org/10.1007/s13201-018-0665-2
Subba Rao, N., and Chaudhary, M. (2019). Hydrogeochemical processes regulating the spatial distribution of groundwater contamination, using pollution index of groundwater (PIG) and hierarchical cluster analysis (HCA): A case study. Groundwater for Sustainable Development, 9. Elsevier B.V. https://doi.org/10.1016/j.gsd.2019.100238 DOI: https://doi.org/10.1016/j.gsd.2019.100238
Subba Rao, N., Sunitha, B., Adimalla, N., and Chaudhary, M. (2020). Quality criteria for groundwater use from a rural part of Wanaparthy District, Telangana State, India, through ionic spatial distribution (ISD), entropy water quality index (EWQI) and principal component analysis (PCA). Environmental Geochemistry and Health, 42(2): 579–599. Springer. https://doi.org/10.1007/S10653-019-00393-5/METRICS DOI: https://doi.org/10.1007/s10653-019-00393-5
Su, H., Kang, W., Xu, Y., and Wang, J. (2018). Assessing Groundwater Quality and Health Risks of Nitrogen Pollution in the Shenfu Mining Area of Shaanxi Province, Northwest China. Exposure and Health, 10(2): 77–97. Springer. https://doi.org/10.1007/S12403-017-0247-9/METRICS DOI: https://doi.org/10.1007/s12403-017-0247-9
Sunitha, V., and Reddy, B.M. (2022). Geochemical characterization, deciphering groundwater quality using pollution index of groundwater (PIG), water quality index (WQI) and geographical information system (GIS) in hard rock aquifer, South India. Applied Water Science, 12(3): 1–20. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/S13201-021-01527-W/FIGURES/4 DOI: https://doi.org/10.1007/s13201-021-01527-w
Trabelsi, F., and Ali, S.B.H. (2022). Exploring Machine Learning Models in Predicting Irrigation Groundwater Quality Indices for Effective Decision Making in Medjerda River Basin, Tunisia. Sustainability (Switzerland), 14(4). MDPI. https://doi.org/10.3390/su14042341 DOI: https://doi.org/10.3390/su14042341
Uddin, M.G., Nash, S., Rahman, A., and Olbert, A.I. (2023). A sophisticated model for rating water quality. Science of the Total Environment, 868. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2023.161614 DOI: https://doi.org/10.1016/j.scitotenv.2023.161614
UN W.W.D. Rapport. (2022). UN World Water Development Report 2022 UN-Water. Available from https://www.unwater.org/publications/un-world-water-development-report-2022. [accessed 26 August 2024]
Varol, S., and Davraz, A. (2015). Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environmental Earth Sciences, 73(4): 1725-1744. Springer Verlag. https://doi.org/10.1007/S12665-014-3531-Z/METRICS DOI: https://doi.org/10.1007/s12665-014-3531-z
Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., Manivannan, R., and Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171(1–4): 595–609. Springer. https://doi.org/10.1007/S10661-009-1302-1/METRICS DOI: https://doi.org/10.1007/s10661-009-1302-1
Verma, D.K., Bhunia, G.S., Shit, P.K., and Tiwari, A.K. (2018). Assessment of Groundwater Quality of the Central Gangetic Plain Area of India Using Geospatial and WQI Techniques. Journal of the Geological Society of India, 92(6): 743–752. Geological Society of India. https://doi.org/10.1007/S12594-018-1097-1/METRICS DOI: https://doi.org/10.1007/s12594-018-1097-1
Wagh, V., Mukate, S., Muley, A., Kadam, A., Panaskar, D., and Varade, A. (2020). Study of groundwater contamination and drinking suitability in basaltic terrain of Maharashtra, India through PIG and multivariate statistical techniques. Journal of Water Supply: Research and Technology-Aqua, 69(4): 398–414. IWA Publishing. https://doi.org/10.2166/AQUA.2020.108 DOI: https://doi.org/10.2166/aqua.2020.108
Wang, D., Wu, J., Wang, Y., and Ji, Y. (2020). Finding High-Quality Groundwater Resources to Reduce the Hydatidosis Incidence in the Shiqu County of Sichuan Province, China: Analysis, Assessment, and Management. Exposure and Health, 12(2): 307–322. Springer. https://doi.org/10.1007/S12403-019-00314-Y/METRICS DOI: https://doi.org/10.1007/s12403-019-00314-y
Wang, X., Xu, Y.J., & Zhang, L. (2022a). Watershed scale spatiotemporal nitrogen transport and source tracing using dual isotopes among surface water, sediments and groundwater in the Yiluo River Watershed, Middle of China. Science of the Total Environment, 833, 155180. https://doi.org/10.1016/j.scitotenv.2022.155180 DOI: https://doi.org/10.1016/j.scitotenv.2022.155180
Wang, X., Xiao, C., Liang, X., and Li, M. (2022b). Groundwater Quality Assessment in the Northern Part of Changchun City, Northeast China, Using PIG and Two Improved PIG Methods. International Journal of Environmental Research and Public Health, 19(15). MDPI. https://doi.org/10.3390/ijerph19159603 DOI: https://doi.org/10.3390/ijerph19159603
Wang, Y., Li, R., Wu, X., Yan, Y., Wei, C., Luo, M., Xiao, Y., and Zhang, Y. (2023). Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using GIS-Based IWQI, EWQI and HHR Model. Water (Switzerland), 15(12). MDPI. https://doi.org/10.3390/w15122233 DOI: https://doi.org/10.3390/w15122233
World Health Organization (WHO). (2011). Evaluating Household Water Treatment Options. Guidelines for drinking water, 4th edn. Geneva, pp 564.
Xie Z., Liu W., Chen S., Yao R., Yang C., Zhang X., Li J., Wang Y., Zhang Y., (2025). Machine learning approaches to identify hydrochemical processes and predict drinking water quality for groundwater environment in a metropolis. Journal of Hydrology: Regional Studies. Volume 58. https://doi.org/10.1016/j.ejrh.2025.102227 DOI: https://doi.org/10.1016/j.ejrh.2025.102227
Xing, L., Guo, H., and Zhan, Y. (2013). Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. Journal of Asian Earth Sciences, 70–71: 250–264. Pergamon. https://doi.org/10.1016/J.JSEAES.2013.03.017 DOI: https://doi.org/10.1016/j.jseaes.2013.03.017
Yahiaoui, S., Meddi, M., Razack, M., Boufekane, A., and Bekkoussa, B.S. (2023). Hydrogeochemical and isotopic assessment for characterizing groundwater quality in the Mitidja plain (northern Algeria). Environmental Science and Pollution Research, 30(33): 80029–80054. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/S11356-023-27952-9/METRICS DOI: https://doi.org/10.1007/s11356-023-27952-9
Yeh, H.F., Chang, J.C., Huang, C.C., and Chen, H.Y. (2022). Spatial correlation of groundwater level with natural factors using geographically weighted regression model in the Choushui River Alluvial Fan, Taiwan. Frontiers in Earth Science, 10. Frontiers Media S.A. https://doi.org/10.3389/feart.2022.977611 DOI: https://doi.org/10.3389/feart.2022.977611
Yousefi, M., Ghoochani, M., and Hossein Mahvi, A. (2018). Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicology and Environmental Safety, 148: 426–430. Academic Press. https://doi.org/10.1016/J.ECOENV.2017.10.057 DOI: https://doi.org/10.1016/j.ecoenv.2017.10.057
Zhang, Y., Jia, R., Wu, J., Wang, H., & Luo, Z. (2021a). Evaluation of Groundwater Using an Integrated Approach of Entropy Weight and Stochastic Simulation: A Case Study in East Region of Beijing. International Journal of Environmental Research and Public Health, 18(14), 7703. https://doi.org/10.3390/ijerph18147703 DOI: https://doi.org/10.3390/ijerph18147703
Zhang, Y., Li, F., Zhang, Q., Li, J., and Liu, Q. (2014). Tracing nitrate pollution sources and transformation in surface-and groundwaters using environmental isotopes. Science of The Total Environment, 490: 213–222. Elsevier. https://doi.org/10.1016/J.SCITOTENV.2014.05.004 DOI: https://doi.org/10.1016/j.scitotenv.2014.05.004
Zhang, Y., Li, X., Luo, M., Wei, C., Huang, X., Xiao, Y., Qin, L., and Pei, Q. (2021b). Hydrochemistry and Entropy-Based Groundwater Quality Assessment in the Suining Area, Southwestern China. Journal of Chemistry, 2021(1): 5591892. John Wiley & Sons, Ltd. https://doi.org/10.1155/2021/5591892 DOI: https://doi.org/10.1155/2021/5591892

Supporting Agencies

The study was carried out as part of the PNR (Projet National de Recherche) project funded by the DGRSDT, Algeria.

How to Cite



Integrated assessment of groundwater quality in the Mitidja Plain (Algeria) using Moran’s I Spatial Analysis, Groundwater Pollution Index, and Entropy-Weighted Water Quality Index in support of artificial recharge planning. (2025). Acque Sotterranee - Italian Journal of Groundwater, 14(3). https://doi.org/10.7343/as-2025-893