Original Papers
30 September 2025

Groundwater quality assessment for drinking and irrigation in the plains of Oran (northwestern Algeria) using geographic information system, water quality indices and multivariate statistical methods

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
0
Views
0
Downloads

Authors

In the southern plains of Oran, the two main aquifer formations are the Mio-Pliocene limestone and the Plio-Quaternary conglomerates. To assess the overall quality of groundwater, and highlight the factors and mechanisms controlling its chemistry, hydrogeological and hydrochemical data are studied using geographic information system (GIS), multivariate statistics (principal component analysis [PCA] and hierarchical cluster analysis [HCA]), potable water quality indices (PWQI), and irrigation water quality parameters. The results show that the Mio-Pliocene aquifers have the best groundwater, with some samples having a mineralization of <1g/L, whereas the quality of groundwater varies in the Plio-Quaternary aquifers from one location to another. The increase in groundwater concentration generally occurs from South to North, in accordance with the direction of groundwater flow towards the Sebkha of Oran. The PCA and HCA results show that groundwater is divided into two major groups. The first represents fresh to passable waters (0.5 g/L ≤ TDS ≤ 2 g/L) located predominantly in the Tessala Mountains piedmonts and around the Tafraoui-Tlelat limestone outcrops. These groundwaters have a low Langelier index (LSI ≈ 0.25) and are neither corrosive nor scaling. The second group represents slightly saline to highly saline groundwater (2.5 g/L ≤ TDS ≤ 5g/L). The slightly saline groundwaters are mostly observed around and South of Ain Larbaa in the Plio-Quaternary conglomerates. The highly saline groundwaters are only observed for 6 samples and are most likely the result of contamination. The PWQI show that only 18% of groundwater is fit for human consumption; the remaining groundwater ranges from poor (21%), very poor (38%), to unsuitable (23%). The results also show that only 60% of samples are suited for irrigation. The hydrochemical results identify geological zoning, climate aridity, and to a lesser degree anthropic activities as the major factors regulating groundwater quality via the carbonates and silicates weathering and ion exchange process.

Altmetrics

Downloads

Download data is not yet available.

Citations

Abbasnia, A., Yousefi, N., Mahvi, A. H., Nabizadeh, R., Radfard, M., Yousefi, M., & Alimohammadi, M. (2019). Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human and Ecological Risk Assessment: An International Journal, 25(4), 988-1005. DOI: https://doi.org/10.1080/10807039.2018.1458596
Achouri, I., Djamel, N., Rachid, C., & Cherif, G. (2024). For A Sustainable Management of Potential Impacts of Global Change on Coastal Aquifers: Case Study of Coastal Aquifers in Annaba City, Algeria. Pol. J. Environ. Stud, 20(10), 1-1.. https://doi.org/10.15244/pjoes/191174 DOI: https://doi.org/10.15244/pjoes/191174
Adimalla, N., Li, P., & Venkatayogi, S. (2018). Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environmental Processes, 5, 363-383.https://doi.org/10.1007/s40710-018-0297-4 DOI: https://doi.org/10.1007/s40710-018-0297-4
Aly, A.A., Al-Omran, A.M. & Alharby, M.M. The water quality index and hydrochemical characterization of groundwater resources in Hafar Albatin, Saudi Arabia. Arab J Geosci 8, 4177–4190 (2015). https://doi.org/10.1007/s12517-014-1463-2 DOI: https://doi.org/10.1007/s12517-014-1463-2
Barzegar, R., Asghari Moghaddam, A., & Tziritis, E. (2016). Assessing the hydrogeochemistry and water quality of the Aji-Chay River, northwest of Iran. Environmental earth sciences, 75, 1-15. https://doi.org/10.1007/s12665-016-6302-1 DOI: https://doi.org/10.1007/s12665-016-6302-1
Bauder, T. A., Davis, J. G., & Waskom, R. M. (2014). Managing saline soils. Fact Sheet No. 0.503, Crop Series| Soil.
Bellaredj, A. E. M. (2025). Hydrochemical analysis of groundwater in the southern plains of Oran (Northwestern Algeria). figshare. Dataset. https://doi.org/10.6084/m9.figshare.3007046
Bellaredj, A. E. M. (2013). Caractérisation des eaux souterraines de la plaine de la M’leta (Algérie, Nord-ouest) par application de méthodes statistiques multivariées et modélisation géochimique. Mémoire de Magister, Université d’Oran, 2, 143.
Bellaredj, A. E., & Hamidi, M. (2020). Computer modelling of groundwater overexploitation: case study from the plain of Sidi Bel Abbès (northwestern Algeria). Journal of Fundamental and Applied Sciences, 12(1), 257-290. DOI: https://doi.org/10.4314/jfas.v12i3.18
Benmarce, K., Hadji, R., Hamed, Y., Zahri, F., Zighmi, K., Hamad, A., & Besser, H. (2023). Hydrogeological and water quality analysis of thermal springs in the Guelma region of North-Eastern Algeria: A study using hydrochemical, statistical, and isotopic approaches. Journal of African Earth Sciences, 205, 105011.https://doi.org/10.1016/j.jafrearsci.2023.105011 DOI: https://doi.org/10.1016/j.jafrearsci.2023.105011
Bouderbala, A. (2019). The impact of climate change on groundwater resources in coastal aquifers: case of the alluvial aquifer of Mitidja in Algeria. Environmental Earth Sciences, 78(24), 698. DOI: https://doi.org/10.1007/s12665-019-8702-5
Chabuk, A., Al-Madhlom, Q., Al-Maliki, A., Al-Ansari, N., Hussain, H. M., & Laue, J. (2020). Water quality assessment along Tigris River (Iraq) using water quality index (WQI) and GIS software. Arabian Journal of Geosciences, 13, 1-23..https://doi.org/10.1007/s12517-020-05575-5 DOI: https://doi.org/10.1007/s12517-020-05575-5
Chele, K. H., Tinte, M. M., Piater, L. A., Dubery, I. A., and Tugizimana, F. (2021). Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Metabolites, 11(11), 724. https://doi.org/10.3390/metabo11110724 DOI: https://doi.org/10.3390/metabo11110724
Cheng, L., Jiang, C., Li, C., & Zheng, L. (2022). Tracing sulfate source and transformation in the groundwater of the linhuan coal mining area, huaibei coalfield, China. International Journal of Environmental Research and Public Health, 19(21), 14434. https://doi.org/10.3390/ijerph192114434 DOI: https://doi.org/10.3390/ijerph192114434
Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4), 518. https://doi.org/10.1007/s42452-021-04521-8 DOI: https://doi.org/10.1007/s42452-021-04521-8
Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater flow regime. Journal geological society of India, 47(2), 179-188.. https://doi.org/10.17491/jgsi/1996/470205 DOI: https://doi.org/10.17491/jgsi/1996/470205
Davies, T., & Fearn, T. (2004). Back to basics: the principles of principal component analysis. Spectroscopy Europe, 16(6), 20.Dey, S., Veerendra, G. T. N., Manoj, A. V. P., & Padavala, S. S. A. B. (2024). Removal of chlorides and hardness from contaminated water by using various biosorbents: A comprehensive review. Water-Energy Nexus, 7, 39-76. https://doi.org/10.1016/j.wen.2024.01.003 DOI: https://doi.org/10.1016/j.wen.2024.01.003
Diongue, D. M., Sagnane, L., Emvoutou, H., Faye, M., Gueye, I. D., & Faye, S. (2022). Evaluation of groundwater quality in the deep maastrichtian aquifer of senegal using multivariate statistics and water quality index-based GIS. Journal of Environmental Protection, 13(11), 819-841.https://doi.org/10.4236/jep.2022.1311052 DOI: https://doi.org/10.4236/jep.2022.1311052
Dogramaci, S., Wallis, I., Cook, P., & Kneeshaw, A. (2025). Hydrochemical evolution of groundwater in a semi-arid environment verified through natural tracer and geochemical modelling, northwest Australia. Applied Geochemistry, 183, 106337. https://doi.org/10.1016/j.apgeochem.2025.106337 DOI: https://doi.org/10.1016/j.apgeochem.2025.106337
Drouiche, A., Zahi, F., Debieche, T. H., Lekoui, A., & Mahdid, S. (2022). Assessment of surface water quality: a case of Jijel region, North East Algeria. Arabian Journal of Geosciences, 15(3), 252. https://doi.org/10.1007/s12517-022-09458-9 DOI: https://doi.org/10.1007/s12517-022-09458-9
Ferchichi, H., Ben Hamouda, M. F., Farhat, B., & Ben Mammou, A. (2018). Assessment of groundwater salinity using GIS and multivariate statistics in a coastal Mediterranean aquifer. International journal of environmental science and technology, 15, 2473-2492. https://doi.org/10.1007/s13762-018-1767-y DOI: https://doi.org/10.1007/s13762-018-1767-y
Guenouche, F. Z., Mesbahi-Salhi, A., Zegait, R., Chouia, S., Kimour, M. T., & Bouslama, Z. (2024). Assessing water quality in North-East Algeria: a comprehensive study using water quality index (WQI) and PCA. Water Practice & Technology, 19(4), 1232-1248. https://doi.org/10.2166/wpt.2024.073 DOI: https://doi.org/10.2166/wpt.2024.073
Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088-1090. https://doi.org/10.1126/science.170.3962.1088 DOI: https://doi.org/10.1126/science.170.3962.1088
Gnanachandrasamy, G., Dushiyanthan, C., Jeyavel Rajakumar, T., & Zhou, Y. (2020). Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI). Environment, development and sustainability, 22, 759-789. https://doi.org/10.1007/s10668-018-0219-7 DOI: https://doi.org/10.1007/s10668-018-0219-7
Hao, Q., Xiao, Y., Chen, K., Zhu, Y., & Li, J. (2020). Comprehensive understanding of groundwater geochemistry and suitability for sustainable drinking purposes in confined aquifers of the Wuyi Region, Central North China Plain. Water, 12(11), 3052. https://doi.org/10.3390/w12113052 DOI: https://doi.org/10.3390/w12113052
Hassani, M. I. (1986). Hydrogéologie d’un Bassin Endoréique Semiaride: Le Bassin Versant de la Grande Sebkha d’Oran’ “Hydrogeology of a Semi-arid Endorheic Basin: The Watershed of the Great Sebkha of Oran “(Doctoral dissertation, Thèse de Doctorat de 3ème Cycle, Grenoble, France).
Hussain, S., Wang, Y., Awais, M., Sajjad, M. M., Ejaz, N., Javed, U., & Iqbal, J. (2024). Integrated assessment of groundwater quality dynamics and Land use/Land cover changes in rapidly urbanizing semi-arid region. Environmental Research,260,119622.https://doi.org/10.1016/j.envres.2024.119622 DOI: https://doi.org/10.1016/j.envres.2024.119622
Ismail, E., Snousy, M. G., Alexakis, D. E., Gamvroula, D. E., Howard, G., El Sayed, E., & Abdelhalim, A. (2023). Multivariate statistical analysis and geospatial mapping for assessing groundwater quality in West El Minia District, Egypt. Water, 15(16), 2909. https://doi.org/10.3390/w15162909 DOI: https://doi.org/10.3390/w15162909
Jamshidi, A., Morovati, M., Golbini Mofrad, M. M., Panahandeh, M., Soleimani, H., & Abdolahpour Alamdari, H. (2021). Water quality evaluation and non-cariogenic risk assessment of exposure to nitrate in groundwater resources of Kamyaran, Iran: spatial distribution, Monte-Carlo simulation, and sensitivity analysis. Journal of Environmental Health Science and Engineering,19(1),11171131. https://doi.org/10.1007/s40201-021-00678-x DOI: https://doi.org/10.1007/s40201-021-00678-x
Juárez, J. E. R., Alvarado, M. A. A., Zamarron, A. S., González, O. A., Hernandez, V. H. B., Trujillo, E. O., & de Alba, Á. A. V. (2023). Chemical conditioning of drinking groundwater through Ca2+/Mg2+ ratio adjust as a treatment to reduce Ca precipitation: batch assays and test bench experiments. Journal of Water Process Engineering, 53, 103844. https://doi.org/10.1016/j.jwpe.2023.103844 DOI: https://doi.org/10.1016/j.jwpe.2023.103844
Kaur, L., Rishi, M. S., Sharma, S., Sharma, B., Lata, R., & Singh, G. (2019). Hydrogeochemical characterization of groundwater in alluvial plains of river Yamuna in northern India: An insight of controlling processes. Journal of King Saud university-science, 31(4), 1245-1253. https://doi:10.1016/j.jksus.2019.01.005 DOI: https://doi.org/10.1016/j.jksus.2019.01.005
Kawo, N. S., & Karuppannan, S. (2018). Groundwater quality assessment using water quality index and GIS technique in Modjo
River Basin, central Ethiopia. Journal of African earth sciences, 147, 300-311.https://doi.org/10.1016/j.jafrearsci.2018.06.034 DOI: https://doi.org/10.1016/j.jafrearsci.2018.06.034
Kessasra, F., Benabes, D., Seraoui, S., Chetibi, N. E. H., Mesbah, M., Khaled-Khodja, S., & Foughalia, A. (2021). Groundwater flow and chloride transport modeling of the alluvial aquifer of lower Soummam Valley, Béjaia, North-East of Algeria. Journal of African Earth Sciences, 173, 104023. https://doi.org/10.1016/j.jafrearsci.2020.104023 DOI: https://doi.org/10.1016/j.jafrearsci.2020.104023
Lalaoui, M., Bouchareb, N., Bousbia, S., Rebbah, A. C., Baali, M., Belmekimah, D., & Fekraoui, R. (2024). Assessment of Water Quality for Drinking and Domestic Use from Three Sources in the Mila Region, Northeastern Algeria. Asian Journal of Water, Environment and Pollution, 21(6), 151-159. https://doi.org/10.3233/AJW240082 DOI: https://doi.org/10.3233/AJW240082
Lechhab, W., Lechhab, T., Tligui, Y., Fakih Lanjri, A., Fath Allah, R., Cacciola, F., & Salmoun, F. (2024). Assessing hydrogeochemical characteristics, pollution sources, water quality, and health risks in Northwest Moroccan springs using statistical analysis. Sustainable Water Resources Management, 10(5), 169. https://doi.org/10.1007/s40899-024-01147-7 DOI: https://doi.org/10.1007/s40899-024-01147-7
Lebrato, M., Garbe-Schönberg, D., Müller, M. N., Blanco-Ameijeiras, S., Feely, R. A., Lorenzoni, L., & Oschlies, A. (2020). Global variability in seawater Mg: Ca and Sr: Ca ratios in the modern ocean. Proceedings of the National Academy of Sciences, 117(36), 22281-22292. https://doi.org/10.1073/pnas.1918943117 DOI: https://doi.org/10.1073/pnas.1918943117
Li, C., Fang, J., Feng, F., Yao, T., Shan, Y., & Su, W. (2025). Differential Evolution in Hydrochemical Characteristics Amongst Porous, Fissured and Karst Aquifers in China. Hydrology, 12(7), 175. https://doi.org/10.3390/hydrology12070175 DOI: https://doi.org/10.3390/hydrology12070175
Li, R., Kuo, Y. M., Liu, W. W., Jang, C. S., Zhao, E., & Yao, L. (2018). Potential health risk assessment through ingestion and dermal contact arsenic-contaminated groundwater in Jianghan Plain, China. Environmental geochemistry and health, 40, 1585-1599. https://doi.org/10.1007/s10653-018-0073-4 DOI: https://doi.org/10.1007/s10653-018-0073-4
Li, P., & Qian, H. (2018). Water resources research to support a sustainable China. International Journal of Water Resources Development, 34(3), 327-336.https://doi.org/10.1080/07900627.2018.1452723 DOI: https://doi.org/10.1080/07900627.2018.1452723
Li, P., Tian, R., Xue, C., & Wu, J. (2017). Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environmental Science and Pollution Research, 24, 13224-13234. https://doi.org/10.1007/s11356-017-8753-7 DOI: https://doi.org/10.1007/s11356-017-8753-7
Liu, Y., Li, M., Zhang, Y., Wu, X., & Zhang, C. (2024). Analysis of the hydrogeochemical characteristics and origins of groundwater in the changbai mountain region via inverse hydrogeochemical modeling and unsupervised machine learning. Water, 16(13), 1853. https://doi.org/10.3390/w16131853 DOI: https://doi.org/10.3390/w16131853
Maleika, W. (2020). Inverse distance weighting method optimization in the process of digital terrain model creation based on data collected from a multibeam echosounder. Applied Geomatics, 12(4), 397-407. https://doi.org/10.1007/s12518-020-00307-6 DOI: https://doi.org/10.1007/s12518-020-00307-6
Manimaran, D., Abishek, S. R., Pitchaimani, V. S., Ravindran, A. A., Soniyamary, M., & Karuppannan, S. (2025). Spatial variation and hydrogeochemical characterization of groundwater in Vallanadu region: insights from water quality index and statistical analysis. Discover Sustainability, 6(1), 524. https://doi.org/10.1007/s43621-025-01381-9 DOI: https://doi.org/10.1007/s43621-025-01381-9
Melki, S., Asmi, A. M. E., Sy, M. O. B., & Gueddari, M. (2020). A geochemical assessment and modeling of industrial groundwater contamination by orthophosphate and fluoride in the Gabes-North aquifer, Tunisia. Environmental Earth Sciences, 79(6), 135. https://doi.org/10.1007/s12665-020-8857-0 DOI: https://doi.org/10.1007/s12665-020-8857-0
Mohit, M., & Suprita, S (2022). A Review on Correlation Between the Total Dissolved Salts (TDS) and Electrical Conductivity (EC) of Water Samples Collected From Different Area of Bhiwani City, Haryana, India. International journal of health sciences, 6(S6), 5431-5438. https://doi.org/10.53730/ijhs.v6nS6.10821 DOI: https://doi.org/10.53730/ijhs.v6nS6.10821
Mukherjee, I., & Singh, U. K. (2021). Characterization of groundwater nitrate exposure using Monte Carlo and Sobol sensitivity approaches in the diverse aquifer systems of an agricultural semiarid region of Lower Ganga Basin, India. Science of the Total Environment, 787, 147657. https://doi.org/10.1016/j.scitotenv.2021.147657 DOI: https://doi.org/10.1016/j.scitotenv.2021.147657
Mohammed, M. A., Szabó, N. P., & Szűcs, P. (2022). Multivariate statistical and hydrochemical approaches for evaluation of groundwater quality in north Bahri city-Sudan. Heliyon, 8(11). https://doi.org/10.1016/j.heliyon.2022.e11308 DOI: https://doi.org/10.1016/j.heliyon.2022.e11308
Ouarekh, M., Bouselsal, B., Belksier, M. S., & Benaabidate, L. (2021). Water quality assessment and hydrogeochemical characterization of the Complex Terminal aquifer in Souf valley, Algeria. Arabian Journal of Geosciences, 14(21), 2239. https://doi.org/10.1007/s12517-021-08498-x DOI: https://doi.org/10.1007/s12517-021-08498-x
Pham, H., Rahman, M. M., Nguyen, N. C., Le Vo, P., Le Van, T., & Ngo, H. (2017). Assessment of surface water quality using the water quality index and multivariate statistical techniques–A case study: the upper part of Dong Nai river basin, Vietnam. Journal of water sustainability, 7(4), 225-245.
Pham, N. Q., & Nguyen, G. T. (2024). Evaluating groundwater quality using multivariate statistical analysis and groundwater quality index. Civil Engineering Journal, 10(3), 699-713. https://doi.org/10.28991/CEJ-2024-010-03-03 DOI: https://doi.org/10.28991/CEJ-2024-010-03-03
Ray, R. K., Syed, T. H., Saha, D., Sarkar, B. C., & Patre, A. K. (2017). Assessment of village-wise groundwater draft for irrigation: a fieldbased study in hard-rock aquifers of central India. Hydrogeology Journal, 25(8), 2513-2525. https://doi.org/10.1007/s10040-017-1625-x DOI: https://doi.org/10.1007/s10040-017-1625-x
Razi, M. H., Wilopo, W., & Putra, D. P. E. (2024). Hydrogeochemical evolution and water–rock interaction processes in the multilayer volcanic aquifer of Yogyakarta-Sleman Groundwater Basin, Indonesia. Environmental Earth Sciences, 83(6), 164.https://doi.org/10.1007/s12665-024-11477-6 DOI: https://doi.org/10.1007/s12665-024-11477-6

How to Cite



Groundwater quality assessment for drinking and irrigation in the plains of Oran (northwestern Algeria) using geographic information system, water quality indices and multivariate statistical methods. (2025). Acque Sotterranee - Italian Journal of Groundwater, 14(3). https://doi.org/10.7343/as-2025-878