Original Papers
30 September 2025

Application of aeromagnetic and vertical electrical sounding to investigate groundwater potential in Dutse and Environs, Jigawa State, Nigeria

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
0
Views
0
Downloads

Authors

This study examines subsurface structures and their potential for groundwater exploration using integrated geophysical datasets, including Magnetic and Vertical Electrical Sounding (VES). In processing the magnetic data, various filters such as Upward Continuation (UC), First Vertical Derivative (FVD), analytic signal, and Source Parameter Imaging (SPI) were applied to enhance the structural attributes and estimate the depths of magnetic structures (basement). The residual and UC maps reveal a strong magnetic high in the northern and southern regions, potentially linked to lithological variations or an undulated basement. Specifically, we delineated a prominent NE-SW trending lineament interpreted as a geologic contact zone, which has never been identified in the area, serving as a pathway for groundwater flow. The depth to the basement is estimated to range from approximately 100 to 500 meters, with the deepest regions indicated around the Army barracks, the northeastern side, and Duste Town. The VES results indicate a deep aquifer in the Barracks and Northeastern axes, with a corresponding deep crystalline basement at depths that align with the SPI depth estimates. We identified a thick claystone and compact sandstone at the barracks and along the contact zone, which may be responsible for the low-yield boreholes. Overall, the deepest aquifer zone in the region lies between 70 and 100 meters. The study highlights key areas for promising groundwater exploration, with apparent resistivity (ρα) contrasts indicating potential aquifer accumulation. This information is essential for efficient groundwater exploration and future drilling attempts.

Altmetrics

Downloads

Download data is not yet available.

Citations

Ajayi, O., & Adegoke-Anthony, C. W. (1988). Groundwater prospects in the Basement Complex rocks of southwestern Nigeria. Journal of African Earth Sciences, 7(1), 227–235. DOI: https://doi.org/10.1016/0899-5362(88)90070-X
Awad, S., Araffa, S., Helaly, A. S., Khozium, A., Lala, A. M. S., Soliman, S. A., & Hassan, N. M. (2015). Delineating groundwater and subsurface structures by using 2D resistivity, gravity and 3D magnetic data interpretation around Cairo – Belbies Desert road, Egypt. NRIAG Journal of Astronomy and Geophysics, 4(1), 134–146. https://doi.org/10.1016/j.nrjag.2015.06.004 DOI: https://doi.org/10.1016/j.nrjag.2015.06.004
Bala, A. E., Eduvie, O. M., & Byami, J. (2011). Borehole depth and regolith aquifer hydraulic characteristics of bedrock types in Kano area, Northern Nigeria. African Journal of Environmental Science and Technology, 5(3), 228–237. https://doi.org/10.5897/AJEST10.194
Bello, Y., Abdulhakeem, A., & Yakubu, M. (2024). Assessing the challenges of viability of borehole through the extraction of lineaments from aeromagnetic data within a hostel at Air Force Institute of Technology, Kaduna, Nigeria. Dutse Journal of Pure and Applied Sciences, 10(2a), 150–160. https://doi.org/10.4314/dujopas.v10i2a.14 DOI: https://doi.org/10.4314/dujopas.v10i2a.14
Bon, A. F., Ombolo, A., Biboum, P. M., Moutlen, J. M., & Mboudou, G. E. (2022). Identification of hydrogeological features using remote sensing and electromagnetic methods in the hard- rock formations of the Cameroon coastal plain (Central Africa): implications for water borehole location. Scientific African, 17. https://doi.org/10.1016/j.sciaf.2022.e01272 DOI: https://doi.org/10.1016/j.sciaf.2022.e01272
Day-lewis, F. D., Slater, L. D., Day-lewis FD, Slater LD, Robinson J, et al. (2017) An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites. J Environ Manage 1–12. https://doi.org/10.1016/j.jenvman.2017.04.033
Díaz-Alcaide, S., & Martínez-Santos, P. (2019). Review: Advances in groundwater potential mapping. Hydrogeology Journal, 27(7), 2307-2324. https://doi.org/10.1007/s10040-019-02001-3 DOI: https://doi.org/10.1007/s10040-019-02001-3
Emujakporue, G., Ofoha, C. C., & Kiani, I. (2018). Investigation into the basement morphology and tectonic lineament using aeromagnetic anomalies of Parts of Sokoto Basin, North Western, Nigeria. Egyptian Journal of Petroleum, 27(4), 671–681. https://doi.org/10.1016/j.ejpe.2017.10.003 DOI: https://doi.org/10.1016/j.ejpe.2017.10.003
Epuh, E. E., Okolie, C. J., Daramola, O. E., Ogunlade, F. S., Oyatayo, F. J., Akinnusi, S. A., & Emmanuel, E. I. (2020). An integrated lineament extraction from satellite imagery and gravity anomaly maps for groundwater exploration in the Gongola basin. Remote Sensing Applications: Society and Environment, 100346. https://doi.org/10.1016/j.rsase.2020.100346 DOI: https://doi.org/10.1016/j.rsase.2020.100346
Fantah, C., Armel, C., Fantah, C., Mezoue, C. A., Mouzong, M. P., Pierre, A., Kamga, T., Nouayou, R., & Nguiya, S. (2022). Mapping of major tectonic lineaments across Cameroon using potential field data. Earth, Planets and Space. https://doi.org/10.1186/s40623-022-01612-7 DOI: https://doi.org/10.1186/s40623-022-01612-7
Gomo, M., & Ngobe, T. (2024). Groundwater exploration in a granite aquifer using the telluric electric frequency section method (TEFSM) in Eswatini, Southern Africa. Sustainable Water Resources Management, 10(1), 1–17. https://doi.org/10.1007/s40899-023-01009-8 DOI: https://doi.org/10.1007/s40899-023-01009-8
Hamza, S. M., Ahsan, A., Daura, H. A., Imteaz, M. A., Ghazali, A. H., & Mohammed, T. A. (2016). Fractured rock aquifer delineation and assessment using spatial analysis in Kano, Nigeria. Arabian Journal of Geosciences, 9(5). https://doi.org/10.1007/s12517-016-2355-4 DOI: https://doi.org/10.1007/s12517-016-2355-4
Hasan, M., & Shang, Y. (2021). Joint geophysical prospecting for groundwater exploration in weathered terrains of South Guangdong, China. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-021-09521-0 DOI: https://doi.org/10.1007/s10661-021-09521-0
Hassan, H., Abdullahi, I. M., & Kwaya, M. Y. (2017). Groundwater chemistry, storage and dynamics in parts of Jigawa Central, Northwestern Nigeria. Bayero Journal of Pure and Applied Science, September. https://doi.org/10.4314/bajopas.v10i1.19 DOI: https://doi.org/10.4314/bajopas.v10i1.19
Ilugbo, S. O., Aigbedion, I., & Ozegin, K. O. (2023). Structural mapping for groundwater occurrence using remote sensing and geophysical data in Ilesha Schist Belt, Southwestern Nigeria. In Geology, Ecology, and Landscapes. UBM Exhibition Singapore PTE LTD. https://doi.org/10.1080/24749508.2023.2182063 DOI: https://doi.org/10.1080/24749508.2023.2182063
Kim, D., & Lekic, V. (2019). Groundwater Variations From Autocorrelation and Receiver Functions. Geophysical Research Letters, 46(23), 13722–13729. https://doi.org/10.1029/2019GL084719 DOI: https://doi.org/10.1029/2019GL084719
Lee, M., Morris, W., Harris, J., & Leblanc, G. (2012). An automatic network-extraction algorithm applied to magnetic survey data for the identification and extraction of geologic lineaments. The Leading Edge, 31(1), 26–31. https://doi.org/10.1190/1.3679324 DOI: https://doi.org/10.1190/1.3679324
Li, Y., & Nabighian, M. (2015). Tools and Techniques: Magnetic Methods of Exploration - Principles and Algorithms. In Treatise on Geophysics: Second Edition (Vol. 11, pp. 335–391). https://doi.org/10.1016/B978-0-444-53802-4.00196-2 DOI: https://doi.org/10.1016/B978-0-444-53802-4.00196-2
Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkinson, P. B. (2013). Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135–156. https://doi.org/10.1016/j.jappgeo.2013.02.017 DOI: https://doi.org/10.1016/j.jappgeo.2013.02.017
López Loera, H., Ramos Leal, J. A., Dávila Harris, P., Torres Gaytan, D. E., Martinez Ruiz, V. J., & Gogichaishvili, A. (2015). Geophysical Exploration of Fractured-Media Aquifers at the Mexican Mesa Central: Satellite City, San Luis Potosí, Mexico. Surveys in Geophysics, 36(1), 167–184. https://doi.org/10.1007/s10712-014-9302-2 DOI: https://doi.org/10.1007/s10712-014-9302-2
M. Metwaly. (2012). Groundwater exploration using geoelectrical resistivity technique at Al-Quwy’yia area Central Saudi Arabia. International Journal of the Physical Sciences, 7(2), 317–326. https://doi.org/10.5897/IJPS11.1659 DOI: https://doi.org/10.5897/IJPS11.1659
Meneisy, A. M., Al, M., Mohamed, D., & Deep, A. (2021). The Egyptian Journal of Remote Sensing and Space Sciences Investigation of groundwater potential using magnetic and satellite image data at Wadi El Amal , Aswan , Egypt q. The Egyptian Journal of Remote Sensing and Space Sciences, 24(2), 293–309. https://doi.org/10.1016/j.ejrs.2020.06.006 DOI: https://doi.org/10.1016/j.ejrs.2020.06.006
Ndikilar, C. E., Idi, B. Y., Terhemba, B. S., Idowu, I. I., & Abdullahi, S. S. (2019). Applications of Aeromagnetic and Electrical Resistivity Data for Mapping Spatial Distribution of Groundwater Potentials of Dutse, Jigawa State, Nigeria. Modern Applied Science, 13(2), 11. https://doi.org/10.5539/mas.v13n2p11 DOI: https://doi.org/10.5539/mas.v13n2p11
Obaje, N. G. (2009). The Basement Complex. In Lecture Notes in Earth Sciences (Vol. 120, pp. 13–30). https://doi.org/10.1007/978-3-540-92685-6_2 DOI: https://doi.org/10.1007/978-3-540-92685-6_2
Obeta, M. C. (2018). Rural water supply in Nigeria: Policy gaps and future directions. Water Policy, 20(3), 597–616. https://doi.org/10.2166/wp.2018.129 DOI: https://doi.org/10.2166/wp.2018.129
Okareh, O. T., & Priscilla, A. I. (2014). Vertical Electrical Sounding and Groundwater Monitoring in a Tank Farm of Crude Oil Loading Terminal in Delta State, Nigeria. International Research Journal of Geology and Mining, 04(02), 64–76. https://doi.org/10.14303/irjgm.2012.034 DOI: https://doi.org/10.14303/irjgm.2012.034
Okpoli, C. C., & Akinbulejo, B. Omobolanle. (2022). Aeromagnetic and electrical resistivity mapping for groundwater development around Ilesha schist belt, southwestern Nigeria. Journal of Petroleum Exploration and Production Technology, 12(3), 555–575. https://doi.org/10.1007/s13202-021-01307-x DOI: https://doi.org/10.1007/s13202-021-01307-x
Oni, A. G., Eniola, P. J., Olorunfemi, M. O., Okunubi, M. O., & Osotuyi, G. A. (2020). The magnetic method as a tool in groundwater investigation in a basement complex terrain: Modomo Southwest Nigeria as a case study. Applied Water Science, 10(8), 1–18. https://doi.org/10.1007/s13201-020-01279-z DOI: https://doi.org/10.1007/s13201-020-01279-z
Osinowo, O. O., & Abdulmumin, Y. (2019). Basement configuration and lineaments mapping from aeromagnetic data of Gongola arm of Upper Benue Trough, northeastern Nigeria. Journal of African Earth Sciences, 160(July), 103597. https://doi.org/10.1016/j.jafrearsci.2019.103597 DOI: https://doi.org/10.1016/j.jafrearsci.2019.103597
Osinowo, O. O., Abdulmumin, Y., & Victor, T. (2023). Energy Geoscience Analysis of high-resolution airborne-magnetic data for hydrocarbon generation and preservation potential evaluation of Yola sub-basins , northern Benue Trough, northeastern Nigeria. Energy Geoscience, 4(1), 33–41. https://doi.org/10.1016/j.engeos.2022.08.002 DOI: https://doi.org/10.1016/j.engeos.2022.08.002
Osinowo, O. O., Akanji, A. O., & Olayinka, A. I. (2014). Application of high resolution aeromagnetic data for basement topography mapping of Siluko and environs, southwestern Nigeria. Journal of African Earth Sciences, 99(PA2), 637–651. https://doi.org/10.1016/j.jafrearsci.2013.11.005 DOI: https://doi.org/10.1016/j.jafrearsci.2013.11.005
Oyeyemi, K. D., Aizebeokhai, A. P., Metwaly, M., Omobulejo, O., Sanuade, O. A., & Okon, E. E. (2022). Assessing the suitable electrical resistivity arrays for characterization of basement aquifers using numerical modeling. Heliyon, 8(5), e09427. https://doi.org/10.1016/j.heliyon.2022.e09427 DOI: https://doi.org/10.1016/j.heliyon.2022.e09427
Patra, H. P., Adhikari, S. K., & Kunar, S. (2016). Groundwater Prospecting and Management. Springer Singapore. https://doi.org/10.1007/978-981-10-1148-1 DOI: https://doi.org/10.1007/978-981-10-1148-1
Robinson, J., Johnson, C. D., Terry, N., & Werkema, D. (2017). An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites. Journal of Environmental Management, 1–12. https://doi.org/10.1016/j.jenvman.2017.04.033 DOI: https://doi.org/10.1016/j.jenvman.2017.04.033
Salem, A., & Ali, M. Y. (2016). Mapping basement structures in the northwestern offshore of Abu Dhabi from high-resolution aeromagnetic data. Geophysical Prospecting, 64(3), 726–740. https://doi.org/10.1111/1365-2478.12266 DOI: https://doi.org/10.1111/1365-2478.12266
Salem, A., Green, C., Cheyney, S., Fairhead, J. D., Aboud, E., & Campbell, S. (2014). Mapping the depth to magnetic basement using inversion of pseudogravity: Application to the Bishop model and the Stord Basin, northern North Sea. Interpretation, 2(2), T69–T78. https://doi.org/10.1190/INT-2013-0105.1 DOI: https://doi.org/10.1190/INT-2013-0105.1
Sawayama, K., Ishibashi, T., Jiang, F., & Tsuji, T. (2023). Relationship Between Permeability and Resistivity of Sheared Rock Fractures: The Role of Tortuosity and Flow Path Percolation Geophysical Research Letters. 1–12. https://doi.org/10.1029/2023GL104418 DOI: https://doi.org/10.1029/2023GL104418
Shevchenko, S. I., & Iasky, R. P. (1997). Calculating depth to basement from magnetic and gravity data , with an example from the western Officer Basin. Geological Survey of Western Australia.
Sunkari, E. D., Kore, B. M., & Abioui, M. (2021). Hydrogeophysical appraisal of groundwater potential in the fractured basement aquifer of the federal capital territory, Abuja, Nigeria. Results in Geophysical Sciences, 5(February), 100012. https://doi.org/10.1016/j.ringps.2021.100012 DOI: https://doi.org/10.1016/j.ringps.2021.100012
Thurston, J. B., & Smith, R. S. (1997). Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI (TM) method. GEOPHYSICS, 62(3), 807–813. https://doi.org/10.1190/1.1444190 DOI: https://doi.org/10.1190/1.1444190
Ugbaja, A. A., William, G. A., & Ugbaja, U. A. (2021). Evaluation of groundwater potential using aquifer characteristics on parts of Boki Area, South-Eastern Nigeria. Global Journal of Geological Sciences, 19(1), 93–104. https://doi.org/10.4314/gjgs.v19i1.8 DOI: https://doi.org/10.4314/gjgs.v19i1.8
Vogelgesang, J. A., Holt, N., Schilling, K. E., Gannon, M., & Tassiersurine, S. (2019). Using High-Resolution Electrical Resistivity to Estimate Hydraulic Conductiv- ity and Improve Characterization of Alluvial Aquifers. Journal of Hydrology, 123992. https://doi.org/10.1016/j.jhydrol.2019.123992 DOI: https://doi.org/10.1016/j.jhydrol.2019.123992
Wu, J., Dai, F., Liu, P., Huang, Z., & Meng, L. (2023). Application of the electrical resistivity tomography in groundwater detection on loess plateau. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-31952-7 DOI: https://doi.org/10.1038/s41598-023-31952-7
Yelwa, N. A., Hamidu, H., Falalu, B. H., Kana, M. A., & I.M., M. (2015). Groundwater prospecting and Aquifer Delineation using Vertical Electrical Sounding (VES) method in the Basement complex terrain of nKumbotso Local Government Area of Kano State Nigeria. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG), 3(1), 01–06. https://doi.org/10.9790/0990-03110106

How to Cite



Application of aeromagnetic and vertical electrical sounding to investigate groundwater potential in Dutse and Environs, Jigawa State, Nigeria. (2025). Acque Sotterranee - Italian Journal of Groundwater, 14(3). https://doi.org/10.7343/as-2025-861