Special Issue - Hydrogeology in Tunisia
31 March 2025

Isotope investigation of shallow aquifers in Chott Djerid, Southwestern Tunisia

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
296
Views
98
Downloads

Authors

Groundwater is a crucial resource for various purposes, especially in the arid land of Southern Tunisia. The assessment of its properties needs a deeper understanding of the main mineralization processes. Therefore, a comprehensive characterization of shallow aquifers in Chott Djerid area has been carried out using isotope methods based on oxygen-18, deuterium, tritium, carbon-14 and carbon-13 on 46 water samples. The obtained results indicated that both oxygen-18 and deuterium pled to meteoric precipitations in the case of the Saharan aquifers. They also highlighted the mixing effect from deeper groundwaters of the underlying Senonian aquifer. This was not the case of the oasis shallow groundwaters, which resulted from the irrigation return flow. Deuterium excess showed that the dissolution of evaporites was considered the main process of salinization (contributing up to 90%), compared to evaporation for oasis groundwaters. Tritium data indicated the presence of a local recharge in the Saharan region; it was estimated by the chloride mass balance to be 13.2 mm/year. The combination of carbon-14 and carbon-13 showed two main groups of water: (1) waters of the Saharan aquifers showing a slight evolution from an old to a recent pole and (2) old waters represented by both the Senonian and the oasis aquifers. A third intermediate group highlighted the mixing effect in the case of several samples from the Saharan neighboring aquifers. In conclusion, isotope-based investigation of shallow aquifers may help decision-makers to set up a sustainable approach for groundwater management in the Djerid harsh environment.

Altmetrics

Downloads

Download data is not yet available.

Citations

Abid, K., Ammar, F.H., Weise, S., Zouari, K., Chkir, N., Rozanski, K., Osenbrück, K. (2014). Geochemistry and residence time estimation of groundwater from miocene-pliocene and upper cretaceous aquifers of Southern Tunisia. Quat. Int. 338, 59–70. https://doi.org/10.1016/j.quaint.2014.04.036 DOI: https://doi.org/10.1016/j.quaint.2014.04.036
Abid, K., Zouari, K., Abidi, B. (2010). Identification and characterisation of hydrogeological relays of continental intercalaire aquifer of southern Tunisia. Carbonates and Evaporites 25, 65–75. DOI: https://doi.org/10.1007/s13146-010-0008-3
Amaral, H.I.F., Berg, M., Brennwald, M.S., Hofer, M., Kipfer, R. (2010). 13C/12C Analysis of Ultra-Trace Amounts of Volatile Organic Contaminants in Groundwater by Vacuum Extraction. Environ. Sci. Technol. 44, 1023–1029. https://doi.org/10.1021/es901760q DOI: https://doi.org/10.1021/es901760q
Annalisa, S. (2007). The stable isotopes and deuterium excess from the Siple Dome ice core: Implications for the late Quaternary climate and elevation history of the Ross Sea Region, West Antarctica.
Besser, H., Dhaouadi, L., Hadji, R., Hamed, Y., Jemmali, H. (2021). Ecologic and economic perspectives for sustainable irrigated agriculture under arid climate conditions: An analysis based on environmental indicators for southern Tunisia. J. Afr. Earth Sci. 177, 104134. https://doi.org/10.1016/j.jafrearsci.2021.104134 DOI: https://doi.org/10.1016/j.jafrearsci.2021.104134
Boumaiza, L., Chesnaux, R., Drias, T., Walter, J., Stumpp, C. (2021). Using vadose-zone water stable isotope profiles for assessing groundwater recharge under different climatic conditions. Hyd. Sci. J., 66(10), 1597-1609. DOI: https://doi.org/10.1080/02626667.2021.1957479
Clark, I.D., Fritz, P. (1997). Environmental Isotopes in Hydrogeology. CRC Press, Boca Raton. https://doi.org/10.1201/9781482242911 DOI: https://doi.org/10.1201/9781482242911
Dansgard, B.W. (1964). Stable isotopes in precipitation. Tellus, 16, 436-468. http://dx.doi.org/10.1111/j.2153-3490.1964.tb00181.x DOI: https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
Dassi, L. (2011). Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: A multi-tracer approach. Appl. Geochemistry 26, 1386–1398. https://doi.org/10.1016/j.apgeochem.2011.05.012 DOI: https://doi.org/10.1016/j.apgeochem.2011.05.012
Dhaouadi, L., Besser, H., Karbout, N., Khaldi, R., Haj-Amor, Z., Maachia, S., Ouassar, F. (2022). Environmental sensitivity and risk assessment in the Saharan Tunisian oasis agro-systems using the deepest water table source for irrigation: water quality and land management impacts, Environment, Development and Sustainability. Springer 24(9), 10695-10727 Netherlands. https://doi.org/10.1007/s10668-021-01878-z DOI: https://doi.org/10.1007/s10668-021-01878-z
Dhaouadi, L., Besser, H., karbout, N., Wassar, F., Alomrane, A.R. (2021). Assessment of natural resources in tunisian Oases: degradation of irrigation water quality and continued overexploitation of groundwater. Euro-Mediterranean J. Environ. Integr. 6, 1–13. https://doi.org/10.1007/s41207-020-00234-3 DOI: https://doi.org/10.1007/s41207-020-00234-3
Edmunds W.M., Guendouz A.H., Mamou A., Moulla, A.S., Shand, P., Zouari K. (1997). Recharge characteristics and groundwater quality of the Grand Erg Orientale Basin. Tech. Rep. Wd/97/46R, Vienna [WWW Document].
Edmunds, W., Tyler, S. (2002). Unsaturated zones as archives of past climates: toward a new proxy for continental regions. Hydrogeol. J. 10, 216–228. https://doi.org/10.1007/s10040-001-0180-6 DOI: https://doi.org/10.1007/s10040-001-0180-6
Edmunds, W.M., Guendouz, A.H., Mamou, A., Moulla, A., Shand, P., Zouari, K. (2003). Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators. Appl. Geochemistry 18, 805–822. https://doi.org/10.1016/S0883-2927(02)00189-0 DOI: https://doi.org/10.1016/S0883-2927(02)00189-0
Gourcy, L., Adamson, J.K., Miner, W.J., Vitvar, T., Belizaire, D. (2022). The use of water stable isotopes for a better understanding of hydrogeological processes in Haiti: overview of existing δ18O and δ2H data. Hydrogeol. J. 30, 1387–1397. https://doi.org/10.1007/s10040-022-02498-1 DOI: https://doi.org/10.1007/s10040-022-02498-1
Guendouz A.; Moulla A. S.; Edmunds W. M.; Shand P.; Poole J.; Zouari K.; Mamou, A. (1997). Palaeoclimatic information contained in groundwaters of the Grand ERG Oriental, North Africa. International Atomic Energy Agency (IAEA): IAEA. [WWW Document https://inis.iaea.org/search/search.aspx?orig_q=RN:29044449].
Haj-Amor, Z., Tóth, T., Ibrahimi, M.K., Bouri, S. (2017). Effects of excessive irrigation of date palm on soil salinization, shallow groundwater properties, and water use in a Saharan oasis. Environ. Earth Sci. 76, 1–13. https://doi.org/10.1007/s12665-017-6935-8 DOI: https://doi.org/10.1007/s12665-017-6935-8
Hamed, Y., Ahmadi, R., Demdoum, A., Bouri, S., Gargouri, I., Ben Dhia, H., Al-Gamal, S., Laouar, R., Choura, A. (2014). Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: A case study of Gafsa mining basin-Southern Tunisia. J. African Earth Sci. 100, 418–436. https://doi.org/10.1016/J.JAFREARSCI.2014.07.012 DOI: https://doi.org/10.1016/j.jafrearsci.2014.07.012
Hassen, I., Hamzaoui-Azaza, F., Bouhlila, R. (2016). Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia. Environ. Monit. Assess. 188, 1–20. https://doi.org/10.1007/s10661-016-5124-7 DOI: https://doi.org/10.1007/s10661-016-5124-7
Hepp, J., Tuthorn, M., Zech, R., Mügler, I., Schlütz, F., Zech, W., Zech, M. (2015). Reconstructing lake evaporation history and the isotopic composition of precipitation by a coupled δ18O–δ2H biomarker approach. J. Hydrol. 529, 622–631. https://doi.org/https://doi.org/10.1016/j.jhydrol.2014.10.012 DOI: https://doi.org/10.1016/j.jhydrol.2014.10.012
Huang, T., Pang, Z. (2012). The role of deuterium excess in determining the water salinisation mechanism: A case study of the arid Tarim River Basin, NW China. Appl. Geochemistry 27, 2382–2388. https://doi.org/10.1016/j.apgeochem.2012.08.015 DOI: https://doi.org/10.1016/j.apgeochem.2012.08.015
Kamel, S., Younes, H., Chkir, N., Zouari, K. (2008). The hydro geochemical characterization of ground waters in Tunisian Chott’s region. Environ. Geol. 54, 843–854. https://doi.org/10.1007/s00254-007-0867-7 DOI: https://doi.org/10.1007/s00254-007-0867-7
Kraiem, Z., Chkir, N., Zouari, K., Parisot, J.C., Agoun, A., Hermitte, D., (2012). Tomographic, hydrochemical and isotopic investigations of the salinization processes in the oasis shallow aquifers, Nefzaoua region, southwestern Tunisia. J. Earth Syst. Sci. 121, 1185–1200. https://doi.org/10.1007/s12040-012-0221-7 DOI: https://doi.org/10.1007/s12040-012-0221-7
Kraiem, Z., Zouari, K., Chkir, N., Agoune, A., (2014). Geochemical characteristics of arid shallow aquifers in Chott Djerid, south-western Tunisia. J. Hydro-environment Res. 8, 460–473. https://doi.org/10.1016/j.jher.2013.06.002 DOI: https://doi.org/10.1016/j.jher.2013.06.002
Liu, F., Zhang, J., Wang, S., Zou, J., Zhen, P. (2023). Multivariate statistical analysis of chemical and stable isotopic data as indicative of groundwater evolution with reduced exploitation. Geosci. Front. 14, 101476. https://doi.org/10.1016/J.GSF.2022.101476. DOI: https://doi.org/10.1016/j.gsf.2022.101476
Liu, J., Chen, Z. Y., Nie, Z. L., & Tian, Y. L. (2024). Estimation of groundwater recharge from precipitation by using tritium and chloride concentrations in the Chinese loess unsaturated zone in Inner Mongolia, China. Hydrogeol. J., 32(5), 1511-1520. DOI: https://doi.org/10.1007/s10040-024-02798-8
Masson-Delmotte, V., Landais, A., Stievenard, M., Cattani, O., Falourd, S., Jouzel, J., Johnsen, S. J., Dahl-Jensen, D., Sveinsbjornsdottir, A., White, J. W. C., Popp, T., Fischer H. (2005). Holocene climatic changes in Greenland: Different deuterium excess signals at Greenland Ice Core Project (GRIP) and NorthGRIP. J. Geophys. Res. 110, D14102. https://doi.org/10.1029/2004JD005575 DOI: https://doi.org/10.1029/2004JD005575
Molnár, A., Molnár, M., Veres, M., Czébely, A., Rinyu, L., Rozmanitz, P.J., Janovics, R. (2022). Determination of the Total 14C Concentration of Water Samples Using the Cod Method and Ams. Radiocarbon 64, 1065–1074. https://doi.org/10.1017/RDC.2022.42 DOI: https://doi.org/10.1017/RDC.2022.42
Morgenstern, U., Taylor, C.B. (2009). Ultra low-level tritium measurement using electrolytic enrichment and LSC. Isotopes Environ. Health Stud. 45. https://doi.org/10.1080/10256010902931194 DOI: https://doi.org/10.1080/10256010902931194
Pourcelot, L., Vintró, L.L., Mitchell, P.I., Burkitbayev, M., Uralbekov, B. (2013). Hydrological Behaviour of Tritium on the Former Semipalatinsk Nuclear Test Site (Kazakhstan) Determined using Stable Isotope Measurements. Eurasian Chem. J. 15, 293–299. DOI: https://doi.org/10.18321/ectj234
Rapti-Caputo, D., Martinelli, G. (2009). The geochemical and isotopic composition of aquifer systems in the deltaic region of the Po River plain (northern Italy). Hydrogeol. J. 17, 467–480. https://doi.org/10.1007/s10040-008-0370-6 DOI: https://doi.org/10.1007/s10040-008-0370-6
Ren, X., Li, P., He, X., & Zhang, Q. (2024). Tracing the sources and evaporation fate of surface water and groundwater using stable isotopes of hydrogen and oxygen. Sci. Total Env., 931, 172708. https://doi.org/10.1016/j.scitotenv.2024.172708 DOI: https://doi.org/10.1016/j.scitotenv.2024.172708
Sahal, S., Kamel, S. (2018). Investigation of water quality origins (hydrochemical, mineralogical and isotopic) in the Jeffara of Medenine aquifer system (South-Eastern Tunisia). J. Water Supply Res. Technol. 67, 586–606. https://doi.org/10.2166/aqua.2018.019 DOI: https://doi.org/10.2166/aqua.2018.019
Taylor, R.G., Cronin, A.A., Lerner, D.N., Tellam, J.H., Bottrell, S.H., Rueedi, J., Barrett, M.H. (2006). Hydrochemical evidence of the depth of penetration of anthropogenic recharge in sandstone aquifers underlying two mature cities in the UK. Appl. Geochemistry 21, 1570–1592. https://doi.org/10.1016/j.apgeochem.2006.06.015 DOI: https://doi.org/10.1016/j.apgeochem.2006.06.015
Wilske, C., Suckow, A., Mallast, U., Meier, C., Merchel, S., Merkel, B., Siebert, C. (2020). A multi-environmental tracer study to determine groundwater residence times and recharge in a structurally complex multi-aquifer system. Hyd. Earth Syst. Sci., 24(1), 249-267. DOI: https://doi.org/10.5194/hess-24-249-2020
Xu, D., Jiao-Jiao, H. and Yang-Yi, Z. (2020). Characterization of soil water by the means of hydrogen and oxygen isotope ratio at dry-wet season under different soil layers in the dry-hot valley of Jinsha River. Open Chemistry, 18(1), 822-832. https://doi.org/10.1515/chem-2020-0112 DOI: https://doi.org/10.1515/chem-2020-0112
Zammouri, M., Siegfried, T., El-Fahem, T., Kriâa, S., Kinzelbach, W. (2007). Salinization of groundwater in the Nefzawa oases region, Tunisia: results of a regional-scale hydrogeologic approach. Hydrogeol. J. 15, 1357–1375. https://doi.org/10.1007/s10040-007-0185-x DOI: https://doi.org/10.1007/s10040-007-0185-x
Ltifi, D., Mhamdi, A., Moumni, L. (2024). Hydrochemical and geoelectrical investigation to determine the origin and spatial distribution of the salinization of the unconfined Plio-Quaternary aquifer of Tabeditt, Southern Tunisia. Acque Sotter. - Ital. J. Groundw. 13, 93–106. https://doi.org/10.7343/as-2024-732 DOI: https://doi.org/10.7343/as-2024-732
Mastrorillo, L., Mazza, R., Viaroli, S. (2018). Recharge process of a dune aquifer (Roman coast, Italy). Acque Sotter. - Ital. J. Groundw. 7, 7–19. https://doi.org/10.7343/as-2018-356 DOI: https://doi.org/10.7343/as-2018-356

How to Cite



Isotope investigation of shallow aquifers in Chott Djerid, Southwestern Tunisia. (2025). Acque Sotterranee - Italian Journal of Groundwater, 14(1). https://doi.org/10.7343/as-2025-791