Hydrochemical and geoelectrical investigation to determine the origin and spatial distribution of the salinization of the unconfined Plio-Quaternary aquifer of Tabeditt, Southern Tunisia

Submitted: 7 November 2023
Accepted: 2 March 2024
Published: 28 March 2024
Abstract Views: 176
PDF: 85
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


  • Dalanda Ltifi Faculty of Sciences of Gafsa, University of Gafsa; LB18ES07: Sedimentary Basins and Petroleum Geology, University of Tunis El Manar, Tunisia.
  • Abdelkader Mhamdi Faculty of Sciences of Gafsa, University of Gafsa; LB18ES07: Sedimentary Basins and Petroleum Geology, University of Tunis El Manar, Tunisia.
  • Lahmadi Moumni Arrondissement des Ressources en Eau de Gafsa, Tunisia.

The expansion of irrigated agriculture and the overexploitation of groundwater in the Tabeditt region lead to a serious deterioration of the chemical quality of water. The compilation of hydrogeological and geophysical studies is essential in order to assess the quality of the Plio-Quaternary waters and to determine the origin of the salinization of these waters. In this study, hydrochemical analyses were carried out on groundwater samples in the Tabeditt region. Hydrochemical data have shown that the salinity in this area could exceed 6 g/L. The interpretation of major ion analyses demonstrates that mineralization is controlled by natural processes. The mineralization process consists of the dissolu-tion of evaporite minerals, namely gypsum, anhydrite, and halite. The geoelectrical study is carried out to obtain information about the distribution and quality of water in the Plio-Quaternary. Interpreta-tion of the resistivity models show the presence of two main zones: the first, near Tabeditt Wadi, is characterized by low values, indicating the influence of salt water in the groundwater and the second, located on the right bank of Wadi Jmal, is characterized by variable resistivity values, generally high, indicating the lateral changes in lithological facies, and the presence of fresh water. In such an arid region suffering from scarcity and degradation (or depletion) of water resources, it is important to implement a master plan that keeps under control the number of wells both known and unknown ones taping these aquifers.

Abdelkader, M., Ilhem, M., Chawki, K., Meriem, T., Lassaad, D. (2022). Assessment of groundwater mineralization processes in the GarâatDouza-Tebeddit shallow aquifer, Southwestern Tunisia: an integrated geoelectrical and hydrochemical approach. Carbonates and Evaporites 37.2: 33 DOI: https://doi.org/10.1007/s13146-022-00781-6

Al-Harahsheh, S., Al-Taani, A.A., Al-Amoushm H.R., Shdeifat, A., Al-Mashagbah, A., Al-Raggad, M., ... & Almasaeid, K. (2020). Assessing the Impact of Zaatari Syrian Refugee Camp in Central North Jordan on the Groundwater Quality. Jordan Journal of Earth and Environmental Sciences11(4), 260-271.

Amamria, S., Bensalem, M.S., Ghanmi, M., Zargouni, F. (2017). Importance de la tectonique Apto-Albienne dans l’évolution de la déformation dans l’Atlas centro-méridional Tunisien “The role of Apto-Albian tectonics in the evolution of deformation in the Tunisian Central Meridional Atlas” J. Adv. Res. Sci. Technol ISSN, 2352-9989 Alshehri, F., Kamal, A. (2021). Groundwater resources exploration of Harrat Khaybar area, northwest Saudi Arabia, using electrical resistivity tomography. Journal of King Saud University-Science 33.5: 101468 DOI: https://doi.org/10.1016/j.jksus.2021.101468

Argoun, M.B (1985). New conditions for output feedback decoupling. In International Conference on Aerospace Sciences and Aviation Technology (Vol. 1, No. ASAT CONFERENCE 14-16 May 1985 r CAIRO, pp. 1047-1052). The Military Technical College. DOI: https://doi.org/10.21608/asat.1985.26573

Badamasi, H., Yaro, M.N, Ibrahim, A., Bashir, I.A. (2019). Impacts of Phosphates on Water Quality and Aquatic Life. Chem. Res. J 4, 124-133

Ben Salem, H., Chaouachi, A. (1985). Carte géologique à l’échelle 1/500,000 de Gafsa, CPG, ONM

Bédir, M. (1995). Mécanismes géodynamiques des bassins associés aux couloirs de coulissements de la marge atlasique de la Tunisie: Séismo-stratigraphie, séismo-tectonique et implications pétrolières (Doctoral dissertation, Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis. Université de Tunis El Manar) “Geodynamic mechanism of the basins associated with the strike-slip corridors of the Tunisian Atlas margin: seismostratigraphy, seismotectonics and petroleum implications (PhD dissertation, Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El Manar”.

Bouaziz, S. (1995). Etude de la tectonique cassante dans la plateforme et l’Atlas Sahariens (Tunisie méridionale): Evolution des paléochamps de contraintes et implications géodynamiques “Study of brittle tectonics in the Saharan Platform and Atlas (souther of Tunisia): Evolution of paleo-stress field and geodynamic implication”. Unpublishedthesis ès-Sciences, Université Tunis II, 484

Braham, M., Boufekane, A., Bourenane, H. et al. (2022). Identification of groundwater potential zones us-ing remote sensing, GIS, machine learning and electrical resistivity tomography techniques in Guelma basin, northeastern Algeria. Geocarto International 1-31 DOI: https://doi.org/10.1080/10106049.2022.2063408

Burbery, L. (2018). Nitrate reactivity in groundwater: a brief review of the science, practical methods of assessment, and collation of results from New Zealand field investigations. Journal of Hydrology (New Zealand) 57.2 : 41-69

Burollet, P.F (1956). Contribution à l’étude stratigraphique de la Tunisie centrale “Contribution to the stratigraphic study of central Tunisia”. Ann. Mines Géol 18

Edwards, L.S. (1977). A modified pseudosection for resistivity and IP. Geophysics, 42(5), 1020-1036. DOI: https://doi.org/10.1190/1.1440762

Ehya, F., Mosleh, A. (2018). Hydrochemistry and quality assessment of groundwater in Basht plain, Kohgiluyeh va-Boyer Ahmad Province, SW Iran. Environmental earth sciences 77(5), 164. DOI: https://doi.org/10.1007/s12665-018-7369-7

Egbueri, J.C., Unigwe, C.O. (2019). An integrated indexical investigation of selected heavy metals in drinking water resources from a coastal plain aquifer in Nigeria. SN Appl. Sci 1 (11), 1422 DOI: https://doi.org/10.1007/s42452-019-1489-x

Egbueri, J.C. (2020b). Signatures of contamination, corrosivity and scaling in natural waters from a fast developing suburb (Nigeria): Insights into their suitability for industrial purposes. Environ. Dev. Sustain 1–19 DOI: https://doi.org/10.1007/s10668-020-00597-1

Farhat, H. (1984). Groundwater resources map of Tunisia at the scale 1: 200,000. Sheet of Gafsa No. 17 and El Ayaicha No. 18

Farhat, M.B., Azaiez, H., Dhaoui, M., Gabtni, H. (2021). Structural control of hydrogeological setting re-vealed by gravity and Time Domain Electromagnetic data analysis: the Moulares basin (Southwestern Tunisia). Arabian Journal of Geosciences 14(18), 1-17 DOI: https://doi.org/10.1007/s12517-021-08202-z

Frollini, E., Parrone, D., Ghergo, S. et al. (2022). An integrated approach for investigating the salinity evolu-tion in a Mediterranean coastal karst aquifer.Water 14.11: 1725 DOI: https://doi.org/10.3390/w14111725

González, J., Mézquita, A. et al. (2021). Quantification of groundwater storage heterogeneity in weathered/fractured basement rock aquifers using electrical resistivity tomography: Sensitivity and uncertainty associated with petrophysical modelling. Journal of Hydrology 593: 125637 DOI: https://doi.org/10.1016/j.jhydrol.2020.125637

Gouasmia, M. (2008). Caractérisation de la géométrie des aquifères alluvionnaire, Néogène sableux et Crétacé carbonaté du bassin de Gafsa par les méthodes géophysiques “Characterization of the geometry of the alluvial, sandy Neogene and carbonate Cretaceous aquifers of the Gafsa basin using geophysical methods”. Unpublished thesis, Univ de Sfax

Hamed, Y., Ahmadi, R., Demdoum, A., Bouri, S., Gargouri, I., Dhia, H.B., Choura, A. (2014). Use of geochemi-cal, isotopic, and age tracer data to develop models of groundwater flow: a case study of Gafsa mining basin Southern Tunisia. Journal of African Earth Sciences 100, 418-436 DOI: https://doi.org/10.1016/j.jafrearsci.2014.07.012

Jones, C., Stanton, D., Hamer, N., et al. (2022). Field investigation of potential terrestrial groundwater-dependent ecosystems within Australia’s Great Artesian Basin. Hydrogeology Journal 28.1: 237-261 DOI: https://doi.org/10.1007/s10040-019-02081-1

Karaouli, F., Zammouri, M., Tarhouni, J., Hamed, Y. (2008). Étude hydrogéologique et impact de l’intensification de l’exploitation sur la qualité des eaux souterraines du bassin de Moularès-Redeyef (Sud-Ouest tunisien) “Hydrogeological study and impact of intensified mining on groundwater quality in the Moularès-Redeyef basin (South-West Tunisia). Science etchangementsplanétaires/Sécheresse 19(1), 61-65

Kelly, D.J. (2006). Development of seawater intrusion protection regulations. In Proceedings 1st SWIM-SWICA Joint Saltwater Intrusion Conference.Cagliari-Chia Laguna, Italy (pp. 135-145)

Kemna, A., Vander Borght, J., Kulessa, B., Vereecken, H. (2002). Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J Hydrol 267:125–146. https://doi.org/10.1016/S0022-1694(02) 00145-2 DOI: https://doi.org/10.1016/S0022-1694(02)00145-2

Kouadri, S., Pande, C.B., Panneerselvam, B. (2022). Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environ. Sci. Pollut. Res 29, 21067–21091 DOI: https://doi.org/10.1007/s11356-021-17084-3

Lakshmi, S.P., Sankari, S.G., Prasanna, S.M., Madhurambal, G. (2017). Evaluation of Water Quality Suitability for Drinking using Drinking Water Quality Index in Nagapattinam district, Tamil Nadu in Southern India. Grounw. Sustain. Dev 6, 43–49. 7 DOI: https://doi.org/10.1016/j.gsd.2017.10.005

Loke, M.H. (2010). Res2Dinv ver. 3.59 for Windows XP/Vista/7 (2010) rapid 2-D resistivity and IP inversion using the least-squares method. Geoelectrical Imaging 2D & 3D Geotomo Software

Ling, C., Xu, Q., Zhang, Q., Ran, J., Lv, H. (2016). Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China). Journal of Applied Geophysics 131: 154-162 DOI: https://doi.org/10.1016/j.jappgeo.2016.06.003

China (2019). Human and ecological risk assessment: an international journal 25.1-2: 11-31 DOI: https://doi.org/10.1080/10807039.2018.1553612

Lotfi, D., Yann, L., Gerhard, S. et al. (2018). Identifying the origin of groundwater salinisation in the Sidi El Hani basin (central-eastern Tunisia). Journal of African Earth Sciences 147: 443-449

Louhaichi, M.A., Tlig, S. (1993). Tectonique synsédimentaire des séries crétacées post-barrémiennes au Nord-Est de la Chaîne des Chotts (Tunisie méridionale) “Synsedimentary tectonics of the post-Barremian Cretaceous series in the North-East of the Chotts Range (southern Tunisia)”. Géologie méditerranéenne 20(1), 53-74 DOI: https://doi.org/10.3406/geolm.1993.1485

Marwa, G., Abdelkader, M., Mouez, G., Damien, D., Lahmadi, M., Mohamed, S. (2023). Hydro chemical and geophysical studies of salinization of the Pliocene–Quaternary aquifer in the zone of El Berka, Mou-lares Redayef mining region, Southwest Tunisia. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517--023-11288-2

Meriem, T., Ali, E., Lassâad, D. (2020). An appraisal of natural fluorine contamination of paleogroundwater in Tozeur oases, southern Tunisia, with emphasis on the anthropogenic impact. Applied Geochemistry, Volume 120. https://doi.org/10.1016/j.apgeochem.2020.104661 DOI: https://doi.org/10.1016/j.apgeochem.2020.104661

Mhamdi, A., Dhahri, F., Gouasmia, M., Moumni, L., Mohamed, S. (2015). Groundwater salinization survey of the Upper Cretaceous-Miocene Complexe terminal aquifer in the Sabaa Biar area of southwestern Tunisia. Journal of African Earth Sciences 112, 83-92 DOI: https://doi.org/10.1016/j.jafrearsci.2015.09.002

Micòl, M., Nicolò, C. (2021). The Issue of Groundwater Salinization in Coastal Areas of the Mediterranean Region: A Review. Water 13(1), 90; https://doi.org/10.3390/w13010090 DOI: https://doi.org/10.3390/w13010090

Mirzavand, M., Fereydoun, G. (2022). Isotopic and hydrochemical evidence for the source and mecha-nism of groundwater salinization in Kashan Plain aquifer in Iran. Environmental Science and Pollution Research 29.23: 34575-34593 DOI: https://doi.org/10.1007/s11356-021-17457-8

M’nassri, S., Dridi, L., Lucas, Y., Schäfer, G., Hachicha, M., Majdoub, R. (2018). Identifying the origin of groundwater salinisation in the Sidi El Hani basin (central-eastern Tunisia). Journal of African Earth Sciences, Volume 147, 443-449, DOI: https://doi.org/10.1016/j.jafrearsci.2018.07.004

Mukate, S., Panaskar, D., Wagh, V., Muley, A., Jangam, C., Pawar, R. (2018). Impact of anthropogenic inputs on water quality in Chincholi industrial area of Solapur, Maharashtra, India. Groundw. Sustain. Dev 7, 359–371 DOI: https://doi.org/10.1016/j.gsd.2017.11.001

Najib, S., Fadili, A., Mehdi, K., Riss, J. et al. (2017). Contribution of hydrochemical and geoelectrical approaches to investigate salinization process and seawater intrusion in the coastal aquifers of Chaouia, Morocco. Journal of contaminant hydrology 198: 24-36 DOI: https://doi.org/10.1016/j.jconhyd.2017.01.003

Nicolas, R.D., Angelakis, A.N., Saeid, E. (2018). Water scarcity management: part 1: methodological framework. International Journal of Global Environmental Issues 17(1), 1-40 DOI: https://doi.org/10.1504/IJGENVI.2018.10011706

Olusegun, O.I., Hycent, O.A, Ifeoluwa, M.O. (2021). Borehole inventory, groundwater potential and water quality studies in AyedeEkiti, Southwestern Nigeria. Discover Water. https://doi.org/10.1007/s43832-020-00001-z DOI: https://doi.org/10.1007/s43832-020-00001-z

Oussama, D., Antunes, I.M.H.R., Carlos, B., Belgacem, A., Adel, K. (2023). Hydrogeochemical processes on inland aquifer systems: A combined multivariate statistical technique and isotopic approach, Ground-water for Sustainable Development Volume 20. https://doi.org/10.1016/j.gsd.2022.100887 DOI: https://doi.org/10.1016/j.gsd.2022.100887

Pilla, G., Torrese P. (2022). Hydrochemical-geophysical study of saline paleo-water contamination in alluvial aquifers. Hydrogeology Journal 30.2: 511-532 DOI: https://doi.org/10.1007/s10040-021-02446-5

Rajmohan, N., Milad, H.Z., Burhan, A.M. (2021). Impact of evaporation on groundwater salinity in the arid coastal aquifer, Western Saudi Arabia. Catena 196: 104864 DOI: https://doi.org/10.1016/j.catena.2020.104864

Rasheed, H., Iqbal, N., Ashraf, M., Ul Hasan, F. (2022). Groundwater quality and availability assessment: A case study of District Jhelum in the Upper Indus, Pakistan. Environmental Advances 7, 100148. DOI: https://doi.org/10.1016/j.envadv.2021.100148

Regional Commissary for Agricultural Development Gafsa (2018). Données climatologique 2018. Ta-bleaux des données pluviométriques

Sajil Kumar, P.J., James, E.J. (2019). Geostatistical and geochemical model-assisted hydrogeochemical pattern recognition along the groundwater flow paths in Coimbatore district, South India. Environ. Dev Sustain 21 (1), 369–384 DOI: https://doi.org/10.1007/s10668-017-0043-5

Salhi, B. (2017). Mutations socio-spatiales et environnementales du bassin minier de Gafsa (Sud-Ouest de Tunisie): apport des outils géomatiques. Diss. Le Mans, 2017

Shrey, S., Gunjan, K.V. (2015). Inversion of Electrical Resistivity Data: A Review. World Academy of Sci-ence, Engineering and Technology. International Journal of Computer and Systems Engineering Vol:9, No:4, 2015.

Ltifi, D., Mhamdi, A., & Moumni, L. (2024). Hydrochemical and geoelectrical investigation to determine the origin and spatial distribution of the salinization of the unconfined Plio-Quaternary aquifer of Tabeditt, Southern Tunisia. Acque Sotterranee - Italian Journal of Groundwater, 13(1), 93–106. https://doi.org/10.7343/as-2024-732


Download data is not yet available.