Mapping natural groundwater potential recharge zones using GIS-AHP in the Upper Cheliff alluvial aquifer, Algeria


Submitted: 8 October 2023
Accepted: 26 February 2024
Published: 28 March 2024
Abstract Views: 207
PDF: 119
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Water scarcity is a big issue in arid and semi-arid regions. This challenge is particularly evident in the Upper Cheliff plain in Algeria, where the alluvial aquifer plays a vital role in drinking water supply and supporting irrigation. This aquifer faces high demand and quality issues. A study was conducted in this context, employing a cartographic approach to assess potential groundwater recharge from precipitation into the alluvial aquifer. The current study aimed at mapping zones with potential natural groundwater recharge zones by applying the Analytic Hierarchy Process (AHP) integrated within a Geographic Information System (GIS) environment, combining various factors that can influence recharge, such as rainfall, surface soil type, slope degree, land use and land cover, unsaturated zone, groundwater depth, and curve number. The map resulting from the analysis indicates that only 22% of the assessed area covers zones with very low and low potential recharge, 35% with moderate potential recharge zones, and 43% with high and very high potential recharge zones. This map reveals that the eastern region of the plain, from the cities of Djendel to Ain Soltane, is moderately to highly favorable for recharge. This is due to the natural recharge from rainfall and watercourse infiltration during dam release periods, excess irrigation water, and recharge from the Miocene sandstone aquifer in areas with direct aquifer contact. A validation process was performed using data from 66 wells distributed in this plain and it indicated that 48 wells exhibited good agreement with the resulting map, while 18 wells showed slight deviations. The results indicate an agreement of 72.72% between expected and exist number value of wells which confirming the good prediction of the AHP technique.


Akindele, A.A., & Todome, L. (2021). Evaluation du risque d’inondation par une analyse spatiale multicritère dans les communes de Pobè et d’Adja-Ouèrè, “Flood risk assessment by a multicriteria spatial analysis in the municipalities of Pobè and Adja-Ouèrè”. International Journal of English Literature and Social Sciences (IJELS), v 6(3), 120–131. https://doi.org/10.22161/ijels. DOI: https://doi.org/10.22161/ijels.63.20

Al Farajat, M., Schaefers, B., Al Hassanat, H., Al Atteyat, N., Al Jahed, N., & Khataibeh, J. (2015). Using GIS And Geophysics In Selecting Suitable Basins With Freshwater Aquifers For An Efficient Exploration Strategy - A Case Study From Petra-Region, Jordan. Earth Sciences Research Journal , 19 (1), 39 – 50, https://repositorio.unal.edu.co/handle/unal/63659. DOI: https://doi.org/10.15446/esrj.v19n1.48357

Ali, M.H., & Mubarak, S. (2017). Approaches and Methods of Quantifying Natural Groundwater Recharge. Asian Journal of Environment & Ecology, 5(1), 1–27. https://doi.org/10.9734/AJEE/2017/36987. DOI: https://doi.org/10.9734/AJEE/2017/36987

Ali Rahmani, S.E., Chibane, B. (2022). Geochemical assessment of groundwater in semiarid area, case study of the multilayer aquifer in Djelfa, Algeria. Appl Water Sci, 12(4), 1–14. https://doi.org/10.1007/s13201-022-01573-y DOI: https://doi.org/10.1007/s13201-022-01573-y

Arfa, A.M.T., Benderradji M.E.H., Saint-Gérand, & T., Alatou, D. (2019). Cartographie du risque feu de forêt dans le Nord-est algérien: cas de la wilaya d’El Tarf, european journal of geography. “Forest Fire Risk Mapping in Northeast Algeria: Case of El Tarf Province, European Journal of Geography” [En ligne], Environnement, Nature, Paysage, document 899. https://doi.org/10.4000/cybergeo.32304. DOI: https://doi.org/10.4000/cybergeo.32304

Arunbose, S., Srinivas, Y., Rajkumar, S., Nair, Nithya C., & Kaliraj, S. (2021). Groundwater for Sustainable Development Remote sensing, GIS and AHP techniques-based investigation of groundwater potential zones in the Karumeniyar river basin, Tamil Nadu, southern India. Groundwater for Sustainable Development, 14, 100586. https://doi.org/10.1016/j.gsd.2021.100586. DOI: https://doi.org/10.1016/j.gsd.2021.100586

Asfaw Kebede, K., Negash, T., Amensis, H., Bekele, G., Zablon, A. (2023). Identifying groundwater recharge potential zone using analytical hierarchy process (AHP) in the semi-arid Shinile watershed, Eastern Ethiopia. Water Practice & Technology. doi:10.2166/wpt.2023.168 DOI: https://doi.org/10.2166/wpt.2023.168

Biswas, S., Prasad, B., & Amit, M. (2020). Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: a case study from Uttar Dinajpur district, West Bengal. Environmental Earth Sciences, 79 (302). https://doi.org/10.1007/s12665-020-09053-9. DOI: https://doi.org/10.1007/s12665-020-09053-9

Bouderbala, A. (2015). Assessment of Groundwater Quality and its Suitability for Agricultural Uses in the Nador Plain, North of Algeria. Water Qual Expo Health 7, 445–457. https://doi.org/10.1007/s12403-015-0160-z. DOI: https://doi.org/10.1007/s12403-015-0160-z

Boulaine, J.L.G. (1957). Etude des sols des plaines du Cheliff. Doctoral thesis. Univ. Algiers, 582 p.

Brunneli, M. (2015). Introduction to the Analytic Hierarchy Process. Springer Cham. DOI: https://doi.org/10.1007/978-3-319-12502-2

Charan, V.S., Naga Jyothi, B., Saha, R. Tushar, W., Das, I. C.,& Venkateshet, J. (2020). An Integrated Geohydrology and Geomorphology Based Subsurface Solid Modelling for Site Suitability of Artificial Groundwater Recharge: Bhalki Microwatershed, Karnataka. J Geol Soc India 96, 458–466. DOI: https://doi.org/10.1007/s12594-020-1583-0

Elsheikh, R.F. (2022). Hospital Site Selection in Jeddah City using AHP and Mathematical Variations Analysis. IJCSNS International Journal of Computer Science and Network Security, 22(5), 628–634.

Escobar, M.T., Aguarón, J., Moreno-Jiménez, J.M. (2004). A note on AHP group consistency for the row geometric mean priorization procedure, European Journal of Operational Research, 153 (2), 318-322. https://doi.org/10.1016/S0377-2217(03)00154-1. DOI: https://doi.org/10.1016/S0377-2217(03)00154-1

ESRI (2016). ArcGIS Desktop: Release 10.4 Redlands, CA: Environmental Systems Research Institute. Gaolatlhe, Bhutto L., Loago, M.(2020).Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. Journal of Hydrology: Regional Studies, 28,2214-5818, https://doi.org/10.1016/j.ejrh.2020.100674.

Glangeaud L., (1955). Les deformations plio-quaternaires de l’Afrique du Nord. “The Plio-Quaternary deformations of North Africa”. International Journal of Earth Sciences GR Geologische Rundschau, 43, 181–196. DOI: https://doi.org/10.1007/BF01764100

Jha, M.K., & Chowdary, V.M. (2007). Challenges of using remote sensing and GIS in developing nations. Hydrogeology Journal, 15(1), 197–200. https://doi.org/10.1007/s10040-006-0117-1. DOI: https://doi.org/10.1007/s10040-006-0117-1

Hawkins, Richard H., Ward, Timothy J., Woodward, Donald E., & Van Mullem, Joseph A. (2008). Curve Number Hydrology (State of the Practice). In Curve Number Method, (pp. 6-20). doi:10.1061/9780784410042.ch02 DOI: https://doi.org/10.1061/9780784410042.ch02

Karamouz, M., Median, H. & Mahmoodzadeh, D. (2022). Inverse unsaturated-zone flow modeling for groundwater recharge estimation: a regional spatial nonstationary approach. Hydrogeology Journal, 30 (5), 1529–1549. https://doi.org/10.1007/s10040-022-02502-8. DOI: https://doi.org/10.1007/s10040-022-02502-8

Hayat, S., Szsóka, Z., Tóth. Á., & Mádl-Szőnyi.J. (2021). MAR Site Suitability Mapping for Arid–Semiarid Regions by Remote Data and Combined Approach: A Case Study from Balochistan, Pakistan. Acque Sotterranee - Italian Journal of Groundwater, 10(3), 17 – 28 https://doi.org/10.7343/as-2021-526. DOI: https://doi.org/10.7343/as-2021-505

Healy, R., & Scanlon, B. (2010). Estimating Groundwater Recharge. Cambridge: Cambridge University Press. https://doi.org/10.1017/ CBO9780511780745. DOI: https://doi.org/10.1017/CBO9780511780745

Kotchoni, D.O.V., Vouillamoz, Jean Michel., Lawson, Fabrice M.A., Adjomayi, Philippe., Boukari, Moussa. & Taylor Richard, G. (2018). Relationships between rainfall and groundwater recharge in seasonally humid Benin: a comparative analysis of long-term hydrographs in sedimentary and crystalline aquifers. Hydrogeology Journal, 27(2), 447-457. DOI: https://doi.org/10.1007/s10040-018-1806-2

Kumar, A., & Krishna, A.P. (2016). Assessment of groundwater potential zones in coal mining impacted hard rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto International, 33(2), 105-129. https://doi.org/10.1080/10106049.2016.1232314. DOI: https://doi.org/10.1080/10106049.2016.1232314

Maizi, D., Boufekane, A., Ait Ouali, K., & Aoudia, M., (2020). Identification of potential area of recharge using geospatial and multi-criteria decision analysis in the Macta watershed (Western Algeria). Arabian Journal of Geosciences, 13(3). https://doi.org/10.1007/s12517-020-5076-7. DOI: https://doi.org/10.1007/s12517-020-5076-7

Makonyo, M., & Msabi, M.M. (2021). Remote Sensing Applications: Society and Environment Identification of groundwater potential recharge zones using GIS-based multi-criteria decision analysis: A case study of semi arid midlands Manyara fractured aquifer, North-Eastern Tanzania. Remote Sensing Applications: Society and Environment, 100544. https://doi.org/10.1016/j.rsase.2021.100544. DOI: https://doi.org/10.1016/j.rsase.2021.100544

Mania,J., & Djeda ,F (1990). Hydrogéologie de la plaine alluviale du Haut Cheliff de la région de Khemis–Miliana (Algérie). Bulletin de la Société Géologique de France, VI (3), 505–513. DOI: https://doi.org/10.2113/gssgfbull.VI.3.505

Mattaeur M. (1958). Étude géologique de l’Ouarsenis oriental (Algérie) - publication du service de la carte géologique de l’Algérie. “Geological study of Eastern Ouarsenis (Algeria) - publication of the Geological Map Service of Algeria”. Bulletin N°17. Alger. Mitina, U., Kunal, D., Darshana, P., Suvarna, T., Sandipan, D. (2023). Delineation of potential groundwater recharge zones using remote sensing, GIS, and AHP approaches, Urban Climate, 48, 2212-0955. https://doi.org/10.1016/j.uclim.2023.101415. DOI: https://doi.org/10.1016/j.uclim.2023.101415

Lentswe, G. B., & Molwalefhe, L. (2020). Delineation of potential groundwater recharge zones using analytic hierarchy processguided GIS in the semi-arid Motloutse watershed, eastern Botswana. J. Hydro. Regio. Stud. 28, 2214-5818. https://doi.org/10.1016/j.ejrh.2020.100674. DOI: https://doi.org/10.1016/j.ejrh.2020.100674

Osaragi, T. (2002).Classification methods for spatial data representation. Working paper. CASA Working Papers (40). Centre for Advanced Spatial Analysis (UCL), London, UK.ER

Owor, M., Taylor, R. G., Tindimugaya, C., & Mwesigwa, D. (2009). Rainfall intensity and groundwater recharge: Empirical evidence from the Upper Nile Basin’, Environmental Research Letters, 4(3). https://doi.org/10.1088/1748-9326/4/3/035009. DOI: https://doi.org/10.1088/1748-9326/4/3/035009

Perrodon A., (1957). Étude géologique des bassins néogènes sublittoraux de l’Algérie nord Occidentale. “Geological study of the Neogene sublittoral basins of Northwestern Algeria”. Phd. Thesis, Natural Sciences. Nancy, Faculty of Sciences, France.

Rajasekhar,M., Gadhiraju,S.R., Kadam,A & Bhagat,V (2020). Arabian Journal of Geosciences.13 (2), 1-19, https://doi.org/10.1007/s12517-019-4996-6. DOI: https://doi.org/10.1007/s12517-019-4996-6

Rahmati, O., Haghizadeh, A., & Stefanidis, S. (2015). Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran. Water Resour Manage, 30, 1131–1150. https://doi.org/10.1007/s11269-015-1215-4. DOI: https://doi.org/10.1007/s11269-015-1215-4

Rao, N.S., Sunitha, B., Sunitha, B., Rambabu, R., Rao, P. V., Nageswara, Rao, P. Surya., Spandana, B. Deepthi., Sravanthi, M., & Marghade, D. (2018). Quality and degree of pollution of groundwater, using PIG from a rural part of Telangana State, India. Applied Water Science, 8(8). https://doi.org/10.1007/s13201-018-0864-x. DOI: https://doi.org/10.1007/s13201-018-0864-x

Richard, K., Agyei, A. W., Nicholas, K., Frempong, N. K. & Thomas, A. (2015). Development of Groundwater Recharge Model for the Sumanpa Catchment at Ashanti-Mampong-Ashanti Area in Ghana. cience Research. 3(6), 289–295. https://doi.org/10.11648/j.sr.20150306.14. DOI: https://doi.org/10.11648/j.sr.20150306.14

Rukundo,E., & Do˘gan, A. (2019). Dominant Influencing Factors of Groundwater Recharge Spatial Patterns in Ergene River. Water, 11(4), 653. https://doi.org/10.3390/w11040653. DOI: https://doi.org/10.3390/w11040653

Saaty, T.L. (1989). Group Decision Making and the AHP. In: Golden, B.L., Wasil, E.A.,& Harker, P.T. (eds).The Analytic Hierarchy Process. Springer, Berlin, Heidelberg. 59–67. https://doi.org/10.1007/978-3-642-50244-6_4. DOI: https://doi.org/10.1007/978-3-642-50244-6_4

Saaty, T.L. (1990, a). An Exposition of the AHP in Reply to the Paper “Remarks on the Analytic Hierarchy Process”. Management Science, 36(3), 259–268. https://doi.org/10.1287/mnsc.36.3.259. DOI: https://doi.org/10.1287/mnsc.36.3.259

Saaty, T.L. (1990, b). How to make a decision: The analytic hierarchy process, European Journal of Operational Research, Volume 48(1),9-26, https://doi.org/10.1016/0377-2217(90)90057-I. DOI: https://doi.org/10.1016/0377-2217(90)90057-I

Saaty, T. L. (1994). How to Make a Decision: The Analytic Hierarchy Process. Interfaces, 24 (6), 19–43. https://doi.org/10.1287/inte.24.6.19 DOI: https://doi.org/10.1287/inte.24.6.19

Santacruz, G., Ramos, J. A., Moran, J., Lopez, B., & Santacruz, E. E. (2017). Quality Indices of Groundwater for Agricultural Use in the Soconusco, Chiapas, Mexico. Earth Sciences Research Journal, 21(3), 117-127. doi:http://dx.doi.org/10.15446/esrj.v21n3.63455. DOI: https://doi.org/10.15446/esrj.v21n3.63455

Scanlon, B.R. , Faunt, Claudia C., Longuevergne, Reedy, Robert C., Alley, William M., McGuire, Virginia L., McMahon., & Peter B., (2012). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley, National Academy of Sciences of the United States of America, 109 (24), 9320-9325. https://doi.org/10.1073/pnas.1200311109. DOI: https://doi.org/10.1073/pnas.1200311109

Scanlon, B.R., Healy, R.W., & Cook, P.G. (2002). Choosing Appropriate Techniques for Quantifying Groundwater Recharge Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1), 18–39. https://doi.org/10.1007/s10040-0010176-2. DOI: https://doi.org/10.1007/s10040-001-0176-2

Shepard, D. S. (1968). A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 ACM National Conference, pp. 517–524, doi:10.1145/800186.810616. DOI: https://doi.org/10.1145/800186.810616

Siejka, M. (2020). The use of AHP to prioritize five waste processing plants locations in Krakow. ISPRS International Journal of Geo- Information, 9(2), 110. https://doi.org/10.3390/ijgi9020110. DOI: https://doi.org/10.3390/ijgi9020110

Souissi, D., Msaddek, M.H., Zouhri, L., Chenini, I., El May, M., & Dlala, M. (2018). Mapping groundwater recharge potential zones in arid region using GIS and Landsat approaches, southeast Tunisia. Hydrological Sciences Journal, 6(2), 251-268. DOI: 10.1080/02626667.2017.1414383. DOI: https://doi.org/10.1080/02626667.2017.1414383

Taibi, B.E., Dridi, H., & Bouhata, R. (2020). Cartographie de la susceptibilité des incendies de forêt à l’aide de données de télédétection, des analyses SIG et AHP (étude de cas de Souhan, Algérie) “Forest fire susceptibility mapping using remote sensing data , GIS and AHP analysis (Case study: Souhan ,Algeria)”. International Journal of Innovation and Applied Studies, 28(4), 885–894.

Tilahun, K., & Merkel, B.J. (2009). Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia. Hydrogeology Journal, 17(6), 1443–1457. https://doi.org/10.1007/s10040-009-0455-x. DOI: https://doi.org/10.1007/s10040-009-0455-x

Tolche, A. D. (2021). Groundwater potential mapping using geospatial techniques: a case study of Dhungeta Ramis sub-basin, Ethiopia. Geol. Ecology, Landscapes, 5(1), 65–80. https://doi.org/10.1080/24749508.2020.1728882 DOI: https://doi.org/10.1080/24749508.2020.1728882

U.S. Dept. of Agriculture (USDA) (1986). Urban hydrology for small watersheds. Technical Release 55, Natural Resources Conservation Service (NRCS), Washington, DC.

USGS - United States Geological Survey (2024). Digital Elevation Model (DEM) 30 m × 30 m resolution. Available at: https://earthexplorer.usgs.gov/. Last accessed: 19/02/2024.

Zarate, E., Hobley, D., MacDonald, A.M., Swift, R.T., Chambers, J., Kashaigili, J. J., Mutayoba, E., Taylor, R.G., Cuthbert, M.O. (2021). The role of superficial geology in controlling groundwater recharge in the weathered crystalline basement of semi-arid Tanzania. Journal of Hydrology: Regional Studies. 36(1), 100833. https://doi.org/10.1016/j.ejrh.2021.100833 . DOI: https://doi.org/10.1016/j.ejrh.2021.100833

Zghibi, A., Mirchi, A., Msaddek, M.H., Merzougui, A., Zouhri, L., Taupin, J. D., Chekirbane, A., Chenini, I., Tarhouni, J. (2020). Using Analytical Hierarchy Process and Multi-Influencing Factors to Map Groundwater Recharge Zones in a Semi-Arid Mediterranean Coastal Aquifer. Water. 12(9), 2525. https://doi.org/10.3390/w12092525. DOI: https://doi.org/10.3390/w12092525

Zine, R., Abdelmansour, N. (2018). Cartographie de la susceptibilité aux inondations par la méthode de l’analyse multicritère et SIG : Cas de la wilaya d’Oran Nord-Ouest de l’Algérie. Journal International Sciences et Technique de l’Eau et de l’Environnement, 3(1) ,67–73.

Merouchi, H., Bouderbala, A., & Elmeddahi, Y. (2024). Mapping natural groundwater potential recharge zones using GIS-AHP in the Upper Cheliff alluvial aquifer, Algeria. Acque Sotterranee - Italian Journal of Groundwater, 13(1), 77–91. https://doi.org/10.7343/as-2024-726

Downloads

Download data is not yet available.

Citations