Application of physical clogging models to Managed Aquifer Recharge: a review of modelling approaches from engineering fields

Submitted: 2 June 2023
Accepted: 19 July 2023
Published: 27 September 2023
Abstract Views: 881
PDF: 417
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


Managed Aquifer Recharge (MAR) sites suffer from the long-lasting problem of clogging. The causes of clogging are physical, biological, chemical and mechanical processes and their complex interaction, with physical clogging being recognised as the predominant process. The intrusion and deposition of particles during water recharge affect the hydraulic properties of the infiltration surface, resulting in a decline in the infiltration capacity of the site over the operating years. Cleaning operations are necessary to restore the original infiltration rates. For this purpose, assessing the risk of clogging can determine the site’s vulnerability and improve the scheme’s design. Numerical models are essential to replicate physical clogging processes and predict the decline in infiltration rates. So far, predictive tools for physical clogging assessment have been missing in MAR literature. Hence, the purpose of this study is to analyse and reorganise physical clogging models from applied engineering fields dealing with water infiltration in natural heterogeneous systems. The modelling approaches are illustrated, starting from the main assumptions and conceptualisation of the soil volume and intruding particles. The individual processes are untangled from the multiple studies and reorganised in a systematic comparison of mathematical equations relevant to MAR applications. The numerical models’ predictive power is evaluated for transferability, following limitations and recommendations for a process-based model applicable to surface spreading schemes. Finally, perspectives are given for clogging risk assessment at MAR sites from modelling and site characterisation. The predictive tool could assist decision-makers in planning the MAR site by implementing cost-effective strategies to lower the risk of physical clogging.

Alem, A., Ahfir, N.-D., Elkawafi, A., & Wang, H. (2014). Hydraulic Operating Conditions and Particle Concentration Effects on Physical Clogging of a Porous Medium. Transport in Porous Media, 106(2), 303-321. DOI:

Alem, A., Elkawafi, A., Ahfir, N.-D., & Wang, H. (2013). Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrogeology Journal, 21(3), 573-586. DOI:

Bai, R., & Tien, C. (2000). Effect of deposition in deep-bed filtration: determination and search of rate parameters. Journal of colloid and interface science, 231(2), 299-311. DOI:

Bear, J. (1988). Dynamics of fluids in porous media. Courier Corporation.

Bedrikovetsky, P., Marchesin, D., Shecaira, F., Souza, A., Milanez, P., & Rezende, E. (2001). Characterisation of deep bed filtration system from laboratory pressure drop measurements. journal of Petroleum Science and Engineering, 32(2-4), 167-177. DOI:

Blazejewski, R., & Murat-Blazejewska, S. (1997). Soil clogging phenomena in constructed wetlands with subsurface flow. Water Science and Technology, 35(5), 183-188. DOI:

Boller, M. A., & Kavanaugh, M. C. (1995). Particle characteristics and headloss increase in granular media filtration. Water Research, 29(4), 1139-1149. DOI:

Bouwer, H. (2002). Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeology Journal, 10(1), 121-142. DOI:

Buik, N., & Willemsen, A. (2002). Clogging rate of recharge wells in porous media. In P. J. D. (Ed.) (Ed.), Management of Aquifer Recharge for Sustainability (pp. 195-198). CRC Press. DOI:

Carman, P. C. (1937). Fluid flow through granular beds. Trans. Inst. Chem. Eng., 15, 150-166.

Conley, G., Beck, N., Riihimaki, C. A., & Tanner, M. (2020). Quantifying clogging patterns of infiltration systems to improve urban stormwater pollution reduction estimates. Water research X, 7, 100049. DOI:

Dillon, P., Alley, W., Zheng, Y., & Vanderzalm, J. (2022). Managed aquifer recharge: Overview and governance. IAH Special Publication.

Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., Stefan, C., Pettenati, M., van der Gun, J., Sprenger, C., Massmann, G., Scanlon, B. R., Xanke, J., Jokela, P., Zheng, Y., Rossetto, R., Shamrukh, M., Pavelic, P., Murray, E., Ross, A., Bonilla Valverde, J. P., Palma Nava, A., Ansems, N., Posavec, K., Ha, K., Martin, R., & Sapiano, M. (2018). Sixty years of global progress in managed aquifer recharge. Hydrogeology Journal, 27(1), 1-30. DOI:

Dillon, P. J., Hickinbotham, M. R., & Pavelic, P. (1994). Review of international experience in injecting water into aquifers for storage and reuse. In Water Down Under 94: Groundwater Papers; Preprints of Papers: Groundwater Papers; Preprints of Papers (pp. 13-14, 16-19). Institution of Engineers, Australia Barton, ACT.

Du, X., Ye, X., & Zhang, X. (2018). Clogging of saturated porous media by silt-sized suspended solids under varying physical conditions during managed aquifer recharge. Hydrological Processes, 32(14), 2254-2262. DOI:

Duryea, P. D. (1996). Clogging layer development and behavior in infiltration basins used for soil aquifer treatment of wastewater Arizona State University].

Elimelech, M., Gregory, J., & Jia, X. (1998). Particle deposition and aggregation: measurement, modelling and simulation. Colloid and Surface Engineering Series.

Elrahmani, A., Al-Raoush, R. I., & Seers, T. D. (2023, 2023/09/01/). Clogging and permeability reduction dynamics in porous media: A numerical simulation study. Powder Technology, 427, 118736. DOI:

Escalante, E. (2013). Practical Criteria in the Design and Maintenance of MAR Facilities in Order to Minimise Clogging Impacts Obtained from Two Different Operative Sites in Spain. In (pp. 119-154).

Fatt, I. (1956). The network model of porous media. Transactions of the AIME, 207(01), 144-181. DOI:

Federico, F. (2017). Particle Migration Phenomena Related to Hydromechanical Effects at Contact between Different Materials in Embankment Dams. In Granular Materials. DOI:

Fichtner, T., Barquero, F., Sallwey, J., & Stefan, C. (2019). Assessing Managed Aquifer Recharge Processes under Three Physical Model Concepts. Water, 11(1). DOI:

Gibson, S., Abraham, D., Heath, R., & Schoellhamer, D. (2009). Vertical gradational variability of fines deposited in a gravel framework. Sedimentology, 56(3), 661-676. DOI:

Glass, J., Šimůnek, J., & Stefan, C. (2020). Scaling factors in HYDRUS to simulate a reduction in hydraulic conductivity during infiltration from recharge wells and infiltration basins. Vadose Zone Journal, 19(1), e20027. DOI:

Gruesbeck, C., & Collins, R. (1982). Entrainment and deposition of fine particles in porous media. Society of Petroleum Engineers Journal, 22(06), 847-856. DOI:

Herzig, J. P., Leclerc, D. M., & Goff, P. L. (1970). Flow of Suspensions through Porous Media—Application to Deep Filtration. Industrial & Engineering Chemistry, 62(5), 8-35. DOI:

Hua, G. F., Zhu, W., & Zhang, Y. H. (2010, Oct). A conceptual approach based on suspended solids to estimate clogging time in constructed wetlands. J Environ Sci Health A Tox Hazard Subst Environ Eng, 45(12), 1519-1525. DOI:

Hutchison, A., Milczarek, M., & Banerjee, M. (2013). Clogging phenomena related to surface water recharge facilities. In Martin R (ed): Clogging Issues Associated with Managed Aquifer Recharge Methods, IAH Commission on Managing Aquifer Recharge, Australia, 106-118.

Indraratna, B., & Vafai, F. (1997). Analytical Model for Particle Migration within Base Soil-Filter System. Journal of Geotechnical and Geoenvironmental Engineering, 123(2), 100-109. DOI:

Ives, K., & Pienvichitr, V. (1965). Kinetics of the filtration of dilute suspensions. Chemical Engineering Science, 20(11), 965-973. DOI:

Iwasaki, T. (1937). Some Notes on Sand Filtration. Journal AWWA, 29(10), 1591-1597. DOI:

Kadlec, R. H., & Wallace, S. (2009). Treatment wetlands. CRC Press Taylor & Francis Group. DOI:

Kandra, H. S., McCarthy, D., Fletcher, T. D., & Deletic, A. (2014). Assessment of clogging phenomena in granular filter media used for stormwater treatment. Journal of Hydrology, 512, 518-527. DOI:

Kanti Sen, T., & Khilar, K. C. (2006, Feb 28). Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Colloid Interface Sci, 119(2-3), 71-96. DOI:

Kovács, G. (1981). Seepage Hydraulics . Elsevier Scientific Publishers BV (North-HolIand), Amsterdam, The Netherlands.

Kozeny, J. (1927). Uber kapillare leitung der wasser in boden. Royal Academy of Science, Vienna, Proc. Class I, 136, 271-306.

Langergraber, G., Haberl, R., Laber, J., & Pressl, A. (2003). Evaluation of substrate clogging processes in vertical flow constructed wetlands. Water Science and Technology, 48(5), 25-34. DOI:

Li, Z., Yang, H., Sun, Z., Espinoza, D. N., & Balhoff, M. T. (2021). A Probability-Based Pore Network Model of Particle Jamming in Porous Media. Transport in Porous Media, 139(2), 419-445. DOI:

Lin, D., Hu, L.-m., Bradford, S., Zhang, X., & Lo, I. (2021, 10/01). Pore-Network Modeling of Colloid Transport and Retention Considering Surface Deposition, Hydrodynamic Bridging, and Straining. Journal of Hydrology, 603, 127020. DOI:

Lippera, M. C., Werban, U., Rossetto, R., & Vienken, T. (2023b). Understanding and predicting physical clogging at managed aquifer recharge systems: A field-based modeling approach. Advances in Water Resources, 177, 104462. DOI:

Lippera, M. C., Werban, U., & Vienken, T. (2023a). Improving clogging predictions at managed aquifer recharge sites: a quantitative assessment on the vertical distribution of intrusive fines. Hydrogeology Journal, 31(1), 71-86. DOI:

Locke, M., Indraratna, B., & Adikari, G. (2001). Time-Dependent Particle Transport through Granular Filters. Journal of Geotechnical and Geoenvironmental Engineering, 127(6), 521-529. DOI:

Majumdar, P. K., Sekhar, M., Sridharan, K., & Mishra, G. C. (2008). Numerical Simulation of Groundwater Flow with Gradually Increasing Heterogeneity due to Clogging. Journal of Irrigation and Drainage Engineering, 134(3), 400-404. DOI:

Maliva, R. G. (2020). Clogging. In R. G. Maliva (Ed.), Anthropogenic Aquifer Recharge: WSP Methods in Water Resources Evaluation Series No. 5 (pp. 307-342). Springer International Publishing. DOI:

Martin, R. (2013). Clogging issues associated with managed aquifer recharge methods. IAH Commission on Managing Aquifer Recharge, Australia, 26-33.

Mays, D., & Martin, R. (2013). Clogging in managed aquifer recharge: flow, geochemistry, and clay colloids. Clogging Issues Associated with Managed Aquifer Recharge Methods, 14-24.

McDowell-Boyer, L. M., Hunt, J. R., & Sitar, N. (1986). Particle transport through porous media. Water Resources Research, 22(13), 1901-1921. DOI:

Meadows, D. L., & Rowell, S. E. (1994). Core sample test method and apparatus. U.S. Patent No 5,325,723.

Muecke, T. W. (1979). Formation fines and factors controlling their movement in porous media. Journal of petroleum technology, 31(02), 144-150. DOI:

Nivala, J., Knowles, P., Dotro, G., Garcia, J., & Wallace, S. (2012, Apr 15). Clogging in subsurface-flow treatment wetlands: measurement, modeling and management. Water Res, 46(6), 1625-1640. DOI:

Pavelic, P., Dillon, P. J., Barry, K. E., Vanderzalm, J. L., Correll, R. L., & Rinck-Pfeiffer, S. M. (2007). Water quality effects on clogging rates during reclaimed water ASR in a carbonate aquifer. Journal of Hydrology, 334(1-2), 1-16. DOI:

Pavelic, P., Dillon, P. J., Mucha, M., Nakai, T., Barry, K. E., & Bestland, E. (2011, May). Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems. Water Res, 45(10), 3153-3163. DOI:

Pendse, H., Tien, C., Rajagopalan, R., & Turian, R. (1978). Dispersion measurement in clogged filter beds: A diagnostic study on the morphology of particle deposits. AIChE Journal, 24(3), 473-485. DOI:

Pérez Paricio, A. (2001). Integrated modelling of clogging processes in artificial groundwater recharge. Universidad Politécnica de Cataluña.

Pucher, B., & Langergraber, G. (2019). The State of the Art of Clogging in Vertical Flow Wetlands. Water, 11(11), 2400. DOI:

Pyne, R. D. G. (1995). Groundwater recharge and wells: a guide to aquifer storage recovery. 1st Edition, CRC press. DOI:

Racz, A. J., Fisher, A. T., Schmidt, C. M., Lockwood, B. S., & Los Huertos, M. (2012, Jul-Aug). Spatial and temporal infiltration dynamics during managed aquifer recharge. Groundwater, 50, 562-570. DOI:

Reddi, L. N., Ming, X., Hajra, M. G., & Lee, I. M. (2000). Permeability Reduction of Soil Filters due to Physical Clogging. Journal of Geotechnical and Geoenvironmental Engineering, 126(3), 236-246. DOI:

Reddi, L. N., Xiao, M., Hajra, M. G., & Lee, I. M. (2005). Physical clogging of soil filters under constant flow rate versus constant head. Canadian geotechnical journal, 42(3), 804-811. DOI:

Rege, S. D., & Fogler, H. S. (1988). A network model for deep bed filtration of solid particles and emulsion drops. AIChE Journal, 34(11), 1761-1772. DOI:

Rinck-Pfeiffer, S., Ragusa, S., Sztajnbok, P., & Vandevelde, T. (2000). Interrelationships between biological, chemical, and physical processes as an analog to clogging in aquifer storage and recovery (ASR) wells. Water Research, 34(7), 2110-2118. DOI:

Roque, C., Chauveteau, G., Renard, M., Thibault, G., Bouteca, M., & Rochon, J. (1995). Mechanisms of formation damage by retention of particles suspended in injection water. SPE European Formation Damage Conference, DOI:

Sallwey, J., Barquero, F., Fichtner, T., & Stefan, C. (2019). Planning MAR Schemes Using Physical Models: Comparison of Laboratory and Field Experiments. Applied Sciences, 9(18). DOI:

Schippers, J. C., & Verdouw, J. (1980). The modified fouling index, a method of determining the fouling characteristics of water. Desalination, 32, 137-148. DOI:

Schuler, U. (1996). Scattering of the composition of soils. An aspect for the stability of granular filters. Geofilters,

Silveira, A. (1965). An analysis of the problem of washing through in protective filters. Proceedings,

Terzaghi, K., Peck, R. B., & Mesri, G. (1967). Soil Mechanics in Engineering Practice, John Wiley & Sons. Inc., New York.

Torkzaban, S., Bradford, S. A., Vanderzalm, J. L., Patterson, B. M., Harris, B., & Prommer, H. (2015, Oct). Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity. J Contam Hydrol, 181, 161-171. DOI:

Wang, Z., Du, X., Yang, Y., & Ye, X. (2012). Surface clogging process modeling of suspended solids during urban stormwater aquifer recharge. Journal of Environmental Sciences, 24(8), 1418-1424. DOI:

Wennberg, K., & Sharma, M. (1997). Determination of the filtration coefficient and the transition time for water injection wells. SPE European Formation Damage Conference, DOI:

Witt, K. (1993). Reliability study of granular filters. Filters in geotechnical and hydraulic engineering, 35-42.

Xie, Y., Wang, Y., Huo, M., Geng, Z., & Fan, W. (2020). Risk of physical clogging induced by low-density suspended particles during managed aquifer recharge with reclaimed water: Evidences from laboratory experiments and numerical modeling. Environmental research, 186, 109527. DOI:

Xiong, Q., Baychev, T. G., & Jivkov, A. P. (2016, 2016/09/01/). Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, 192, 101-117. DOI:

Ye, X., Cui, R., Du, X., Ma, S., Zhao, J., Lu, Y., & Wan, Y. (2019). Mechanism of suspended kaolinite particle clogging in porous media during managed aquifer recharge. Groundwater, 57(5), 764-771. DOI:

Zamani, A., & Maini, B. (2009). Flow of dispersed particles through porous media — Deep bed filtration. Journal of Petroleum Science and Engineering, 69(1-2), 71-88. DOI:

Zhang, H., Xu, Y., & Kanyerere, T. (2020). A review of the managed aquifer recharge: Historical development, current situation and perspectives. Physics and Chemistry of the Earth, Parts A/B/C, 102887. DOI:

Zou, Z., Shu, L., Min, X., & Chifuniro Mabedi, E. (2019). Clogging of Infiltration Basin and Its Impact on Suspended Particles Transport in Unconfined Sand Aquifer: Insights from a Laboratory Study. Water, 11(5). DOI:

Lippera, M. C., Werban, U., & Vienken, T. (2023). Application of physical clogging models to Managed Aquifer Recharge: a review of modelling approaches from engineering fields. Acque Sotterranee - Italian Journal of Groundwater, 12(3), 9–20.


Download data is not yet available.