Impact of climatic variability on groundwater resources in the Eastern Mitidja plain, Algeria

Submitted: 21 January 2023
Accepted: 23 March 2023
Published: 31 March 2023
Abstract Views: 652
PDF: 398
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


  • Nouara Makhlouf Geo-Environment Laboratory, Department of Geology, Faculty of Earth Sciences, Geography and Country Planning, University of Sciences and Technology Houari Boumediene (FSTGAT/USTHB), Algiers, Algeria.
  • Djamel Maizi Geo-Environment Laboratory, Department of Geology, Faculty of Earth Sciences, Geography and Country Planning, University of Sciences and Technology Houari Boumediene (FSTGAT/USTHB), Algiers, Algeria.
  • Abdelmadjid Boufekane Geo-Environment Laboratory, Department of Geology, Faculty of Earth Sciences, Geography and Country Planning, University of Sciences and Technology Houari Boumediene (FSTGAT/USTHB), Algiers, Algeria.

The aim of this study is to assess the main climatic characteristics and their impact on the hydrological regime at the watershed and the hydrodynamic functioning of the aquifer in the Eastern Mitidja plain (Algeria, 2,382 millions km2). In detail, specific objectives are to determine the recharge mode of the aquifer, to propose solutions for the groundwater overexploitation and to remedy the seawater problem in its northeastern part. The application of three statistical methods (Pettitt’s, Buishand’s U statistic and, Lee and Heghinian’s tests) and two drought indices (SPI and Ipmc) allowed identifying the wet and dry periods for the time interval 1906-2018. In addition, the piezometric maps analysis for the years 1973, 1981, 2015 and 2020 was carried out to investigate the hydrodynamic behavior of the study area and to determine the effect of the hydrological regime on the hydrogeological functioning of the aquifer. Results obtained by the application of the three statistical methods and two drought indices indicate two distinct periods. The first period is wet and it extends from 1906 to 1973, while the second period is dry and it goes from 1974 to 2018. It is characterised by a rainfall deficit between 15% and 19% compared to the previous period (1906-1973). Furthermore, a significant drawdown in the piezometric levels is observed from 1973 to 2020, varying between 10 and 80 m, that indicates a negative trend of piezometric levels. This drawdown coincides with the rainfall deficit noticed during the period 1973-2018. Also, seawater intrusion was observed in the northeastern part of the plain. To enhance groundwater management, an effective remediation strategy is to use an artificial recharge technique from the existing wastewater treatment plants in the region, complemented by stopping the pumping of wells in coastal zones that are affected by seawater intrusion supplemented by a hydro-chemical monitoring of the groundwater.

Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water resources research, 45(10). DOI:

Achi K., Salem A, Combes P, Couchot A, Grenet B Pradines D (1973) Hydrogeological map of Algiers 1/200 000, National Agency Water Resources (NAWR), Algeria.

Allen D, Mackie D, Wei M (2004) Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeology journal 12(3), 270-290. DOI:

Archer DR, Fowler HJ (2004). Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections, and hydrological implications. DOI:

Ashraf Vaghefi AS, Mousavi SJ, Abbaspour KC, Srinivasan R, Yang H (2014). Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrological processes, 28(4):2018-2032. DOI:

Beaulieu C, Seidou O, Ouarda TB, Zhang X, Boulet G, Yagouti A (2008). Intercomparison of homogenization techniques for precipitation data. Water Resources Research, 44(2). DOI:

Bedoum A, Bouka Biona C, Alladoum M, Issak Adoum I, Baohoutou L (2014) impact de la variabilité pluviométrique et de la sécheresse au sud du tchad : effets du changement climatique. Rev. Ivoir. Sci. Technol., 23:13-30.

Belaidi M, Rbehaoui H (2004). Hydrogeological directory of the Mitidja aquifer. Internal document, National Agency Water Resources (NAWR), Algeria.

Bennie, Partners (1983) Schéma d’aménagement des ressources en eau dans la région d’Alger.

Benziada (1994) Etude hydrogéologique et hydrologique de la plaine de la Mitidja Est (Application du modèle mathématique ASM au bassin côtier algérois, Algérie. Thèse de doctorat, Université Franche Conté, France, 235p.

Bloetscher F, Meeroff DE, Heimlich BN, Brown AR, Bayler D, Loucraft M (2010) Improving resilience against the effects of climate change. Journal‐American Water Works Association, 102(11):36-46. DOI:

Bonneton JR (1977) Géologie de la zone de contact entre Mitidja et Atlas de Blida au sud d'Alger. Thèse 3ème cycle, Université Pierre et Marie Curie Paris VI, France.

Booth DB (1991) Urbanization and the natural drainage system--impacts, solutions, and prognoses.

Bouderbala A (2018) Effects of Climate Variability on Groundwater Resources in Coastal Aquifers (Case of Mitidja Plain in the North Algeria). In Groundwater and Global Change in the Western Mediterranean Area. Conference paper, Part of the Environmental Earth Sciences book series (EESCI), pp. 43-51. Springer, Cham. DOI:

Boufekane A, Belloula M, Busico G, Drias T, Reghais A, Maizi D (2022) Hybridization of DRASTIC Method to Assess Future GroundWater Vulnerability Scenarios: Case of the Tebessa-Morsott Alluvial Aquifer (Northeastern Algeria). Applied Sciences, 12:9205. DOI:

Bouguerra K (2001) Potentiality in surface water resources in the north of Algeria (Algeria). N° 71/ NAWR, 10p.

Buishand TA (1984) Tests for detecting a shift in the mean of hydrological time series. Journal of hydrology, 73(1-2):51-69. DOI:

Coastal Development Program (CDP) (2006) Integrated final report marking the closure of the CDP of the Algerian coastal zone "Algiers coastal zone".

De Hipt FO, Diekkrüger B, Steup G, Yira Y, Hoffmann T, Rode M (2018) Modeling the impact of climate change on water resources and soil erosion in a tropical catchment in Burkina Faso, West Africa. Catena, 163:63-77. DOI:

Dillon P (2005) Future management of aquifer recharge. Hydrogeology journal, 13(1):313-316. DOI:

Drouiche A, Nezzal F, Djema M (2019) Variabilité interannuelle des précipitations dans la plaine de la Mitidja en Algérie du Nord (Revue des sciences de l’eau Journal of Water Science, 32(2):165-177. DOI:

Eslamian S, Khordadi MJ, Abedi-Koupai J (2011) Effects of variations in climatic parameters on evapotranspiration in the arid and semi-arid regions. Global and Planetary Change, 78(3-4):188-194. DOI:

Foster S, Loucks DP (2006) Non-renewable groundwater resources. Series on groundwater.

GIEC (2013) WGI: The Physical science basis.

Hadef R, Hadef A (2001) Water deficiency in Algeria: an alarming situation. Desalination 137(1-3):215-218. DOI:

Gherissi R, Baba-Hamed K, Bouanani A (2021) Highlighting drought in the Wadi Lakhdar Watershed Tafna, Northwestern Algeria. Arabian Journal of Geosciences. 14, 984. DOI:

Glangeaud I (1932) Etude hydrogéologique de la région littorale de la province d'Alger. Thèse Paris et Bulletin des Services carte Géologique 2ème série n° 8, Alger, 608p.

Géohydraulique (1968-1972) Etude hydrogéologique quantitative de la plaine de la Mitidja. Rapport n° 1 à 5. ANRH. Alger, 150p.

Hajji S, Allouche N, Bouri S, Aljuaid AM, Hachicha W (2022) Assessment of Seawater Intrusion in Coastal Aquifers Using Multivariate Statistical Analyses and Hydrochemical Facies Evolution-Based Model. International Journal of Environmental Research and Public Health. DOI:

Hamed Y, Hadji R, Redhaounia B, Zighmi K, Bâali F, El Gayar A (2018) Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterranean Journal for Environmental Integration, 3(1):25. DOI:

Hossain SA, Rahman A (2019) Trend Analysis in Flood Data in the Brisbane River Catchment, Australia. In 2nd International Conference on Water and Environmental Engineering (iCWEE-2019, Dhaka).

Intergovernmental Panel on Climate Change (IPCC) (2018) Global warming of 1.5 °C: summary for policymakers. Switzerland: IPCC (ISBN 978-92-9169-151-7.

Kingumbi A, Bargaoui Z, Hubert P (2005): Investigation of the rainfall variability in central Tunisia. Hydrogiological sciences journal, 50(3):508. DOI:

Meddi H, Meddi M (2009) Variabilité des précipitations annuelles du Nord-Ouest de l’Algérie. Sécheresse, 20(1):57-65. DOI:

Ministry of Spatial Planning and The Environment. (MSES) (2005) Management include water resources and sanitation liquid- trend and alternative, p 67.

Ministry of Water Resource (2005) National Plan of Water 70p. DOI:

Ministry of Water Resource (2010) National Plan of Water 12p.

National Agency of Water Resources (2014) Note internal 20p.

National Water Plan (NWP) (2010) Ministerial Annual Report, Ministry of Water Resources, Algeria.

Nezzal F, Iftini-Belaid Z (2013) Climatic variability and antropic impacts on the alluvial groundwater of the East Mitidja (Bay of Algiers) UEE N° 21 &22 Special Seminar CIREDD.

N’guessan BVH, Oga YMS, Yapi AF, Kouadio BH, Biemj J, Affian K (2018) characterization of meteorological drought in the region of marahoué (center-west of Ivory Coast: contribution of the standardized precipitation index (SPI). Larhyss Journal, 33:41-50.

Ouhamdouch S, Bahir M et Carreira PM (2019) Impact du changement climatique sur la ressource en eau en milieu semi-aride : exemple du bassin d'Essaouira (Maroc). DOI:

Ould Amara A (2000) Drought in Algeria. NAWR, Bir Mourad Raïs, 5p.

Pettitt A (1979) A non‐parametric approach to the change‐point problem. Journal of the Royal Statistical Society: Series C. Applied Statistics, 28(2):126-135. DOI:

Sogreah (2010) Control of seawater intrusion in the coastal aquifer in the East of Algiers,NAWR , Algiers, 70p.

Sow S, Thiam A, Mendy P, Ndiaye S, Cabral FJ (2018) Variation de la production agricole et sa valeur ajoutée par rapport à la pluviosité au Sénégal. Afrique Science, 14(4):16-30.

Sowers J, Vengosh A, Weinthal E (2011) Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Climatic Change, 104(3-4):599-627. DOI:

Toubal AC, (1998) Approche géophysique des problèmes d’hydrodynamique et d’invasion marine en milieu souterrain. Exemple des plaines d’Annaba, de la Mitidja et de la baie d’Alger. Thèse de Doctorat, USTHB/Alger.

Makhlouf, N., Maizi, D., & Boufekane, A. (2023). Impact of climatic variability on groundwater resources in the Eastern Mitidja plain, Algeria. Acque Sotterranee - Italian Journal of Groundwater, 12(1), 9–23.


Download data is not yet available.