Estimating moisture content and hydraulic properties of unsaturated sandy soils of Tiber River (Central Italy): integrating data from calibrated PR2/6 probe and hydraulic property estimator


Submitted: 23 December 2021
Accepted: 16 February 2022
Published: 31 March 2022
Abstract Views: 907
PDF: 770
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The correct estimation of soil moisture data is essential in soil-water management and estimating the hydraulic properties of unsaturated soils. The increased use of Multi-Sensor Capacitance Probes (MCAPs) requires careful calibration. Without accurate calibration, the use of MCAPs leads to incorrect water content estimation, making them of no practical use. This work presents the specific calibration equations for the correct use of the PR2/6 profile probe on sands of different nature. As the iron oxides content of the Tiber River basin sands increases, the calibration lines slope increases, allowing the understanding of the different electromagnetic responses. As for other sands worldwide, sands with high iron oxides content show a relative high specific surface than quartz or calcareous sands, responsible for more adhesive water (e.g., high permittivity values). The water content data are integrated with a hydraulic property estimator allowing the estimation of the hydraulic conductivity of soils. Applying the manufacturer equation of the PR2/6 profile probe instead of the specific equation leads to an overestimation of the hydraulic conductivity values up to two orders of magnitude, making therefore rather incorrect the understanding of the phenomena occurring in the unsaturated zone.


Ambrosetti P, Basilici G, Barbato CL, Carboni G (1995) Il pleistocene inferiore nel ramo sud-occidentale del bacino Tiberino (Umbria): aspetti litostratigrafici e biostratigrafici. “Lower Pleistocene in the southwestern branch of the Tiber basin (Umbria): lithostratigraphic and biostratigraphic aspects”. Il Quaternario - Italian Journal of Quaternary Sciences 8(1): 19-36.

ASTM D422-63(2007)e2 (2007) Standard Test Method for Particle- Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2007. Available from: https://www.astm.org/Standards/ D422 (last accessed 16/12/2021).

ASTM D2974-20e1 (2019) Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA. Available from: https://www.astm.org/Standards/D2974.htm (last accessed 16/12/2021).

ASTM D698-12e2 (2021) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort.

ASTM International: West Conshohocken, PA, USA. Available from: https://www.astm.org/d0698-12e02.html (last accessed 16/12/2021).

Baldanza A, Bizzarri R, Di Matteo L, Lezzerini M, Mencaroni L, Pagnotta S, Raneri S, Vinti G (2018) New integrated data from clay lacustrine deposits of the Dunarobba area (Umbria, Central Italy). Alpine and Mediterranean Quaternary 31: 87-104. doi:10.26382/AMQ.2018.14

Balek J (1988) Groundwater Recharge Concepts. Estimation of natural groundwater recharge. Springer, Dordrecht. doi:10.1007/978-94-015-7780-9_1 DOI: https://doi.org/10.1007/978-94-015-7780-9_1

Basilici G (1997) Sedimentary facies in an extensional and deeplacustrine depositional system: the Pliocene Tiberino Basin, Central Italy. Sedimentary Geology 109(1-2): 73-94. doi:10.1016/S0037-0738(96)00056-5 DOI: https://doi.org/10.1016/S0037-0738(96)00056-5

Bordoni M, Valentino R, Meisina C, Bittelli M, Chersich S (2018) A simplified approach to assess the soil saturation degree and stability of a representative slope affected by shallow landslides in Oltrepò Pavese (Italy). Geosciences 8(12): 472. doi:10.3390/geosciences8120472 DOI: https://doi.org/10.3390/geosciences8120472

Chartzoulakis K, Bertaki M (2015) Sustainable Water Management in Agriculture under Climate Change. Agriculture and Agricultural Science Procedia 4: 88-89. doi:10.1016/j.aaspro.2015.03.011. DOI: https://doi.org/10.1016/j.aaspro.2015.03.011

Daly E, Porporato A (2005) Review of Soil Moisture Dynamics: From Rainfall Infiltration to Ecosystem Response. Environmental Engineering Science 21(1): 9-24. doi:10.1089/ees.2005.22.9 DOI: https://doi.org/10.1089/ees.2005.22.9

Delta-T Devices (2017) User Manual for the Profile Probe type PR2. Available from: https://delta-t.co.uk/wp-content/uploads/2017/02/PR2_user_manual_version_5.0.pdf (last accessed 16/12/2021).

De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal 10(1): 5-17. doi:10.1007/s10040-001-0171-7 DOI: https://doi.org/10.1007/s10040-001-0171-7

Dhakal M, West CP, Deb SK, Kharel G, Ritchie GL (2019) Field calibration of PR2 capacitance probe in Pullman clay-loam soil of Southern High Plains. Agrosyst. Geosci. Environ 2: 1-7. doi:10.2134/age2018.10.0043 DOI: https://doi.org/10.2134/age2018.10.0043

Di Matteo L, Brunelli S, Capponi E (2008) Strenght parameters of compacted cohesive soils: analysis of sandy-clayely soils of the “Lisciani di Pantalla” (Todi, Central italy). Italian Journal of Engineering Geology and Environment 8(1): 25-32. doi:10.4408/IJEGE.2008-01.O-02

Di Matteo L, Pauselli C, Valigi D, Ercoli M, Rossi M, Guerra G, Cambi C, Ricco R, Vinti G (2018) Reliability of water content estimation by profile probe and its effect on slope stability. Landslides 15(1):173-180. doi:10.1007/s10346-017-0895-7 DOI: https://doi.org/10.1007/s10346-017-0895-7

Di Matteo L, Spigarelli A, Ortenzi S (2021) Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy. Sustainability 13(1): 227. doi:10.3390/su13010227 DOI: https://doi.org/10.3390/su13010227

Evett SR, Tolk JA, Howell TA (2006) Soil Profile water content determination: Sensor accuracy, axial response, calibration, temperature dependence, and precision. Vadose Zone Journal 5(3):894-907. doi:10.2136/vzj2005.0149. DOI: https://doi.org/10.2136/vzj2005.0149

Frank JR (1981) Dedolomitization in the Taum Sauk limestone (Upper Cambrian), Southeast Missouri. Journal of Sedimentary Research 5181): 7-18. doi:10.1306/212F7BF3-2B24-11D7-8648000102C1865D DOI: https://doi.org/10.1306/212F7BF3-2B24-11D7-8648000102C1865D

Fredlund DG (2000) The 1999 RM Hardy Lecture: The implementation of unsaturated soil mechanics into geotechnical engineering. Canadian Geotechnical Journal 37(5): 963-986. doi:10.1139/t00-026 DOI: https://doi.org/10.1139/t00-026

Gardner CMK, Dean TJ, Cooper JD (1998) Soil Water Content Measurement with a High-Frequency Capacitance Sensor. Journal of Agricultural Engineering Research 71(4): 395-403. doi:10.1006/jaer.1998.0338 DOI: https://doi.org/10.1006/jaer.1998.0338

Hodnett MG, Bell P (1986) Soil moisture investigations of groundwater recharge through black cotton soils in MadhyaPradesh, India. Hydrological Sciences Journal 31(3): 361-381. doi:10.1080/02626668609491054 DOI: https://doi.org/10.1080/02626668609491054

Kargas G, Londra P, Anastasatou M, Moustakas N (2020) The effect of soil iron on the estimation of soil water content using dielectric sensors. Water 12(2): 598. doi:10.3390/w12020598 DOI: https://doi.org/10.3390/w12020598

Kargas G, Kerkides P (2008) Water content determination in mineral and organic porous media by ML2 theta probe. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage 57(4): 435-449. doi:10.1002/ird.364 DOI: https://doi.org/10.1002/ird.364

Kizito F, Campbell CS, Campbell GS, Cobos DR, Teare BL, Carte B, Hopmans JW (2008) Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. Journal of Hydrology 352(3-4): 367-378. doi:10.1016/j.jhydrol.2008.01.021 DOI: https://doi.org/10.1016/j.jhydrol.2008.01.021

Lee CH, Yeh HF, Chen JF (2008) Estimation of groundwater recharge using the soil moisture budget method and the base-flow model. Environ Geol 54: 1787–1797. doi:10.1007/s00254-007-0956-7 DOI: https://doi.org/10.1007/s00254-007-0956-7

Leong EC, Rahardjo H (1997) Permeability Functions for Unsaturated Soils. Journal of Geotechnical and Geoenvironmental Engineering 123(12): 1118-1126. doi:10.1061/(ASCE)1090-0241(1997)123:12(1118) DOI: https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1118)

Logsdon SD, Green TR, Seyfried M, Evett SR, Bonta J (2010) Hydra Probe and Twelve-Wire Probe Comparisons in Fluids and Soil Cores. Soil Science Society of American Journal 74(1): 5-12. doi:10.2136/sssaj2009.0189 DOI: https://doi.org/10.2136/sssaj2009.0189

Lu N, Likos WJ (2004) Unsaturated soil mechanics. John Wiley & Sons. Hoboken, NewJersey.

Mathias SA, Sorensen JPR, Butler AP (2017) Soil moisture data as a constraint for groundwater recharge estimation. Journal of Hydrology 552: 258-266. doi:10.1016/j.jhydrol.2017.06.040 DOI: https://doi.org/10.1016/j.jhydrol.2017.06.040

Muñoz-Carpena R (2004) Field Devices For Monitoring Soil Water Content. BUL343 of the Agricultural and Biological Engineering Department, UF/IFAS Extension (USA). Available from: https://edis.ifas.ufl.edu/pdf/AE/AE26600.pdf (last accessed 15/12/2021)

Nielsen DR, Van Genuchten MTh, Biggar JW (1986) Water flow and solute transport processes in the unsaturated zone. Water Resources Research 22(9S): 89S-108S. doi:10.1029/WR022i09Sp0089S DOI: https://doi.org/10.1029/WR022i09Sp0089S

Qi Z, Helmers MJ (2010) The conversion of permittivity as measured by a PR2 capacitance probe into soil moisture values for Des Moines lobe soils in Iowa. Soil Use and Management 26(1): 82-92. doi:10.1111/j.1475-2743.2009.00256.x DOI: https://doi.org/10.1111/j.1475-2743.2009.00256.x

Robinson DA, Gardner CMK, Cooper JD (1999) Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: Comparison, including the effects of bulk soil electrical conductivity. Journal of Hydrology 223(3-4): 198-211. doi:10.1016/S0022-1694(99)00121-3 DOI: https://doi.org/10.1016/S0022-1694(99)00121-3

Robinson DA, Cooper JD, Gardner CMK (2002) Modelling the relative permittivity of soils using soil hygroscopic water content. Journal of Hydrology 255(1-4): 39-49. doi:10.1016/S0022-1694(01)00508-X DOI: https://doi.org/10.1016/S0022-1694(01)00508-X

Ru?diger C, Western AW, Walker JP, Smith AB, Kalma JD, Willgoose GR (2010) Towards a general equation for frequency domain reflectometers. Journal of Hydrology 383(3-4): 319-329. doi:10.1016/j.jhydrol.2009.12.046 DOI: https://doi.org/10.1016/j.jhydrol.2009.12.046

Russo T, Alfredo K, Fisher J (2014) Sustainable Water Management in Urban, Agricultural, and Natural Systems. Water 6(12): 3934- 3956. doi:10.3390/w6123934 DOI: https://doi.org/10.3390/w6123934

Saxton KE, Rawls WJ (2006) Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal 70(5): 1569-1578. doi:10.2136/sssaj2005.0117 DOI: https://doi.org/10.2136/sssaj2005.0117

Schmutz PP, Namikas SL (2011) Utility of the Delta-T Theta Probe for obtaining surface moisture measurements from beaches. Journal of

Coastal Research 27(3):478-484. doi:10.2112/08-1130.1 DOI: https://doi.org/10.2112/08-1130.1

Sevostianova E, Deb S, Serena M, VanLeeuwen D, Leinauer B (2015) Accuracy of two electromagnetic soil water content sensors in saline soils. Soil Science Society of America Journal 79(6): 1752-1759. doi:10.2136/sssaj2015.07.0271 DOI: https://doi.org/10.2136/sssaj2015.07.0271

Smart P, Tovey NK (1981) Electron microscopy of soils and sediments: examples. Soil Science 134(2): 146. doi:10.1180/claymin.1982.017.1.11 DOI: https://doi.org/10.1097/00010694-198208000-00010

Topp GC (1980) Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resources

Research 16(3): 574-582.. doi:10.1029/WR016i003p00574 DOI: https://doi.org/10.1029/WR016i003p00574

U.S. Department of Agriculture. Soil Water Characteristics–SWC software, Available from: https://www.nrcs.usda.gov/wps/portal/nrc/detailfull/national/water/manage/drainage/?cid=stelprdb1045310 (last accessed 15/12/2021)

Van Dam RL, Schlager W, Dekkers MJ, Huisman JA (2002) Ironoxides as a cause of GPR reflections. Geophysics 67(2): 536-545.

doi:10.1190/1.1468614 DOI: https://doi.org/10.1190/1.1468614

Vaz CM, Jones S, Meding M, Tuller M (2013) Evaluation of standard calibration functions for eight electromagnetic soil moisture

sensors. Vadose Zone Journal 12(2). doi:10.2136/vzj2012.0160 DOI: https://doi.org/10.2136/vzj2012.0160

Walker JP, Willgoose GR, Kalma JD (2004) In situ measurement of soil moisture: A comparison of techniques. Journal of Hydrology 293(1-4): 85-99. doi:10.1016/j.jhydrol.2004.01.008 DOI: https://doi.org/10.1016/j.jhydrol.2004.01.008

Welton JE (1984) “SEM petrology atlas”. Amer Assn of Petroleum Geologists. Tulsa, Oklahoma, USA. DOI: https://doi.org/10.1306/Mth4442

Zhang YK, Schilling KE (2006) Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A Field observation and analysis. Journal of Hydrology 319(1-4): 328- 338. doi:10.1016/j.jhydrol.2005.06.044 DOI: https://doi.org/10.1016/j.jhydrol.2005.06.044

Ortenzi, S., Mangoni, M., & Di Matteo, L. (2022). Estimating moisture content and hydraulic properties of unsaturated sandy soils of Tiber River (Central Italy): integrating data from calibrated PR2/6 probe and hydraulic property estimator. Acque Sotterranee - Italian Journal of Groundwater, 11(1), 17–25. https://doi.org/10.7343/as-2022-541

Downloads

Download data is not yet available.

Citations