Groundwater Flow and Transport Model in Cecina Plain (Tuscany, Italy) using GIS processing


Submitted: 16 December 2014
Accepted: 3 March 2016
Published: 30 March 2015
Abstract Views: 894
PDF: 683
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Riccardo Armellini Università di Firenze - Dipartimento di Storia, Archeologia, Geografia, Arte, Spettacolo, Firenze, Italy.
  • Elena Baldini ARPAT Agenzia Regionale per la Protezione Ambientale della Toscana, Direzione Tecnica, Dipartimenti Pisa e Livorno, Italy.
  • Dario Del Seppia ARPAT Agenzia Regionale per la Protezione Ambientale della Toscana, Direzione Tecnica, Dipartimenti Pisa e Livorno, Italy.
  • Fabrizio Franceschini ARPAT Agenzia Regionale per la Protezione Ambientale della Toscana, Direzione Tecnica, Dipartimenti Pisa e Livorno, Italy.
  • Natacha Gori Università di Pisa, Pisa, Italy.
  • Stefano Menichetti ARPAT Agenzia Regionale per la Protezione Ambientale della Toscana, Direzione Tecnica, Dipartimenti Pisa e Livorno, Italy.
  • Stefano Tessitore ARPAT Agenzia Regionale per la Protezione Ambientale della Toscana, Direzione Tecnica, Dipartimenti Pisa e Livorno, Italy.
This work provides a groundwater flow and transport model of trichlorethylene and tetrachlorethylene contamination in the Cecina's coastal aquifer. The contamination analysis, with source located in the Poggio Gagliardo area (Montescudaio, Pisa), was necessary to optimize the groundwater monitoring and remediation design. The work was carried out in two phases: • design of a conceptual model of the aquifer using GIS analysis of many stratigraphic, chemical and hydrogeological data, collected from 2004 to 2012 in six aqueduct wells; • implementation of a groundwater flow and transport numerical model using the MODFLOW 88/96 and MT3D code and the graphical user interface GroundWaterVistas 5. The conceptual model hypothesizes a multilayer aquifer in the coastal plain extended to the sandy-clay hills, recharged by rainfall and by the Cecina River. The aquifer shows important hydrodynamic features affecting both the contamination spreading, due to the presence of a perched and heavily polluted layer separate from the underlying productive aquifer, and the hydrological balance, due to a thick separation layer that limits exchanges between the river and the second groundwater aquifer. The numerical model, built using increasingly complex versions of the initial conceptual model, has been calibrated using monitoring surveys conducted by the Environmental Protection Agency of Regione Toscana (ARPAT), in order to obtain possible forecast scenarios based on the minimum and maximum flow periods, and it is currently used as a tool for decision support regarding the reclamation and/or protection of the aquifer. Future developments will regard the implementation of the multilayer transport model, based on a new survey, and the final coupling with the regional hydrological model named MOBIDIC.

Armellini, R., Baldini, E., Del Seppia, D., Franceschini, F., Gori, N., Menichetti, S., & Tessitore, S. (2015). Groundwater Flow and Transport Model in Cecina Plain (Tuscany, Italy) using GIS processing. Acque Sotterranee - Italian Journal of Groundwater, 4(1). https://doi.org/10.7343/as-101-15-0128

Downloads

Download data is not yet available.

Citations