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Riassunto: Il Decreto Legislativo 152/06 ha adottato i principi 
delle Direttive Europee nel campo delle acque sotterranee e ha 
delegato alle Regioni il compito di identificare le aree soggette 
ad un inquinamento diffuso. Nella Pianura Padana, la quali-
tà delle acque sotterranee è principalmente condizionata dalla 
presenza di industrie e attività antropiche. Lo scopo di questo 
lavoro è stato quello di valutare l’inquinamento diffuso da te-
tracloroetilene (PCE) nell’area Allargata di Milano (Functional 
Urban Area, FUA) partendo dal corposo dataset di valori di con-
centrazione raccolti tra il 2003 e il 2014 da enti di controllo e 
gestori per il monitoraggio qualitativo delle acque sotterranee. 
Per questo, si è sviluppata una nuova metodologia che utilizza 
sia metodi statistici che deterministici. Dapprima, mediante una 
analisi cluster (CA) applicata al dataset di partenza, sono state 
identificate le sorgenti negli acquiferi superficiale e semiconfina-
to dell’area. E’ stato poi implementato un modello numerico di 
trasporto per studiare l’estensione dei pennacchi e individuare i 
pozzi e i piezometri colpiti da inquinamenti provenienti da sor-
genti puntuali. Alla luce dei risultati ottenuti, è stato costruito 
un nuovo dataset contenente esclusivamente i dati imputabili 
alla componente diffusa dell’inquinamento e dunque non cor-
relabili ai pennacchi simulati. Tramite “kriging”, metodologia 
usata per il trattamento geostatistico delle variabili regionalizza-

Abstract: The Italian law 152/2006 adopted the EU Water Frame-
work Directive principles and delegated to the Regions the task of iden-
tifying areas subject to groundwater diffuse pollution. In the Lombardy 
Plain, the qualitative groundwater conditions are affected mainly by 
the presence of industries and anthropic activities. The aim of this work 
was to assess tetrachloroethylene (PCE) diffuse pollution in the Milan 
Functional Urban Area (FUA), where chlorinated solvents are the main 
groundwater contaminants and the results of monitoring campaigns for 
the years 2003-2014 were collected in a dataset. For this purpose, a 
new methodology was implemented both in a deterministic and stochastic 
process. At first, hotspots were identified through Cluster Analysis (CA) 
applied to concentration values collected in unconfined/confined aquifers 
(2003-14). Then, a numerical transport model was implemented to 
study the hotspot plume extension in reason to identify monitoring wells 
not affected by diffuse pollution but related to specific hotspot sources. 
Consequently, it was possible to erase these data from the whole initial 
dataset in order to have a new one containing only diffuse concentrations. 
Interpolating them through ordinary kriging, PCE iso-concentrations 
maps identified areas where values are over the Maximum Contaminant 
Level (1.1 μg/l, Italian Law 152/06). Considering descriptive statis-
tics and iso-PCE concentration maps, a median PCE value estimation  
(10 μg/l) was find as representative of PCE diffuse contamination Mi-
lan city. Moreover, a stochastic methodology was used in order to con-
sider uncertainties due to unknown multiple-sources and environmental 
heterogeneity. The innovative approach gave some interesting solutions to 
point out areas where the contaminant mass release is higher and where 
high probability unknown sources can be found.

te, sono state prodotte mappe di concentrazione per identificare 
le aree oltre la concentrazione soglia di contaminazione (CSC -  
D.Lgs 152/06 – 1.1 mg/l). La combinazione delle mappe di con-
taminazione con le statistiche descrittive dei principali cluster, 
ottenute da un’analisi statistica multivariata del dataset di par-
tenza, ha fornito un valido strumento di analisi della distribu-
zione della contaminazione diffusa da PCE (con valore mediano 
intorno a 10 mg/l) nell’area di studio. Lo sviluppo infine di una 
metodologia stocastica di modellazione, ha permesso di conside-
rare le incertezze legate alle sorgenti multiple (rilascio di mas-
sa) e all’eterogeneità delle variabili idrogeologiche (conducibilità 
idraulica), al fine di identificare le aree dove il rilascio di massa 
contaminante negli acquiferi è più consistente e dove dunque con 
maggior probabilità è possibile individuare le sorgenti puntuali 
non note.
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Introduction
The problem of groundwater resources contamination in 

highly urbanized areas, during the last two decades, is one of 
the most important environmental issues at both European 
(European Union, 2006) and National level. In Italy, the 
Po plain, and in particular the Lombardy Region, is one of 
the most densely populated areas where human activities 
have caused a high impact on the groundwater quality. 
Nowadays, thanks to EU legislation, public authorities drive 
continue environmental monitoring activities that led to the 
creation of databases available for the study and resolution 
of environmental protection problems. In recent years, the 
new National and Regional regulations consider the necessity 
to develop plans for the remediation and management of 
the most industrialized areas. Here, groundwater is affected 
by contamination due both to point sources (PS, associated 
with medium dimension sources, i.e. hotspots) and multiple 
point sources (MPS, constituted by a series of unidentifiable 
small sources clustered in a large area and causing a diffuse 
contamination).

The latter category predominates in European Functional 
Urban Areas (FUA) and cannot be managed with remediation 
techniques such as those commonly used for large/medium 
contaminated sites, mainly because of the difficulty to identify 
many different source areas that release small contaminant 
mass. Consequently, the usual remediation procedures are 
not economically sustainable and often fail to provide results 
in an acceptable time frame. The Italian Law 152/2006 
holds the definition of diffuse contamination as “a physical-
chemical alteration of environmental medium due to diffuse 
sources and not linked directly to known and unique source”. 
However, nor the National legislation nor the contents of 
the Regional plans provide useful methodologies to quantify 
this phenomenon, making impossible to distinguish the PS 
and MPS pollution existing in urban areas. Moreover, also in 
scientific literature there are few examples (Frumkin 2002; 
Nolan et al. 2002; Stevenazzi et al. 2017), mostly developed 
for the assessment of diffuse pollution spread linked to 
anthropogenic practices carried out over large areas, such as 
agricultural ones (e.g. Fertilizers, herbicides). On the contrary, 
in the case of urban areas, it is not possible to determine 
diffuse pollution sources because the contamination is due 
to multiple sources, too small to be precisely identified and 
removed.

The aim of this work is to give a contribution to find 
an integrated approach (statistical and deterministic 
mathematical modeling combined with statistical modeling) 
in order to: 
•	 distinguish PS (hotspot) and MPS (diffuse) contamination 

in urban groundwater throughout multivariate and 
K-means statistical approach and transport numerical 
modelling with MODFLOW (Harbaugh and McDonald 
1996;McDonald and Harbaugh 1988) and MT3DMS 
(Zheng and Wang 1999);

•	 estimate the contamination level for those areas mainly 
connected with a diffuse contamination by using kriging;

•	 identify the urban areas, which have the highest 
probability to be linked to MPS by stochastic particle 
back-tracking analysis or that can contribute to the 
contaminant mass inflow.

Study area
Milan FUA is one of the most densely populated areas in 

Lombardy (north Italy). In particular, in the FUA (composed 
by the city of Milan and some neighbouring municipalities 
such as Monza and Sesto San Giovanni) about 4.000.000 
inhabitants live within 1120 km2 (Fig. 1). The northern 
area of FUA is characterised by a dense agglomeration of 
companies where, especially near the Milan City, (from ’50) 
many industries such as automotive, refineries, chemical 
plants, still and tires production are historically located 
(Provincia di Milano 1992). Because of the high hydraulic 
conductivity (10-4-10-3 m/s) and the high groundwater 
withdrawal rate (18 m3/s, Gattinoni and Scesi 2017), Milan 
represents a drainage area of groundwater and many pollutants 
flow into municipality. The geological build up delineates 
2 main aquifers (Group A and Group B) in the study area 
divided by an aquitard (thickness of 10 meters of 10-8 m/s 
low permeability) (ARPA Lombardia 2015; Carcano and 
Piccin 2002; Francani and Beretta 1995). The shallow aquifer 
(named Group A) is composed by a gravel sand material with 
a relative high hydraulic conductivity (10-3 m/s) whereas the 
semiconfined aquifer (named Group B) is constituted by fine 
sand and gravel (10-4 m/s). The separation of two aquifers 
becomes more and more discontinuous in the norther part 
of Milan (in Fig. 1b the limit of aquitard is the black line). 
Because of this hydrogeological conformation, mainly in the 
northern area of Milan, since ’50 groundwater quality has 
been strongly compromised by development of several plumes 
that sometimes overlap each other contributing to the spread 
of diffuse contamination with concentration values that 
exceed the national threshold values of PCE (1.1 mg/l). PCE 
is a manufactured chemical and does not occur naturally in 
the environment. Slow natural biodegradation of PCE may 
occur under anaerobic conditions when microorganisms are 
acclimated. However, the biodegradation process degrades 
PCE to TCE and eventually to vinyl chloride, which are also 
considered human carcinogens.

Materials and methods
The main goal of this paper is to propose a methodology 

useful to explore big datasets using statistical tools and 
to couple the dataset analysis with a numerical transport 
model. The applied methodology consists of a combination 
of different steps:

a. data collection and preparation (a large database must 
contain concentration of pollutants, characteristics of 
monitoring network and a documental research on 
contaminated sites) in order to have a robust statistical 
treatment of data (outlier detection, errors and missing 
values);
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Fig. 1 - a) Location of the study area; b) FUA of Milan with PCE samplings (2003-2014). The pink area was considered by numerical modeling.

Fig. 1 - a) Ubicazione dell’area di studio; b) Area Funzionale Urbana di Milano con i dati misurati di PCE (2003-2014). Il colore rosa rappresenta l’area oggetto di 
modellazione.

b. application of multivariate analysis in order to evaluate 
dataset Principal Components (PCs) and different levels 
of diffuse contamination;

c. Cluster Analysis (CA) application to an univariate set of 
concentration PCE data in order to separate the hotspots 
(PS) from the diffuse pollution (MPS);

d. plume simulation (MODFLOW/MT3DMS) starting from 
the identified PS. The evaluation of the plume extensions 
allows to separate monitoring data respectively linked to 
PS and to MPS;

e. geostatistical analysis in order to assess diffuse 
contamination considering the dataset without 
concentration values related to the PS;

f. innovative stochastic numerical modelling for the 
simulation of diffuse pollution. 

All these tools estimated the magnitude of diffuse pollution 
in Milan FUA both for shallow and semiconfined aquifer. The 
following sub-sections present the most important steps for 
the application of the methodology to PCE contaminant.

Data collection and preparation
Initial database consists of more than 44000 hydro-

chemical data related to the period 2003-2014 and detected in 
3458 wells/piezometers (see Fig. 1b). Moreover, the historical 
data for the period 1960-2000 were very useful to understand 
the history of the hot-spot sources. All data were provided 
by ARPA Lombardia (Regional Environmental Agency) and 
included in a large database with all available information 
(name of monitoring point, depth, screening positions, 
concentration values and other qualitative information about 
groundwater such as ions).

Cluster and multivariate analysis for the identification 
of hotspots and outliers

CA (for detail see Afifi et al. 2003; Fabbris and Gallo 
1993), applied to the univariate PCE concentration dataset 
in Milan FUA (45602 samples during the period 2003-2014) 
was extremely useful to identify outliers and contamination 
hotspots. Though many methods are presented in literature 
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Tab. 1 - Summary statistics of the groundwater quality constituents used for the PCA. 

Tab. 1 - Statistiche descrittive dei principali elementi chimico-fisici della qualità delle acque sotterranee usati per la PCA.

(Rosner 1975) for detecting outliers, in this work once 
the hotspots were identified, a detailed analysis for each 
monitoring point (i.e. piezometer) was done in reason to delete 
the true outliers (singular concentration values 10 times 
higher than the time series average concentration) from the 
dataset. Furthermore, the hot spots obtained with CA were 
compared with potential contaminant sources located into 
FUA (database of contaminated sites is provided by ARPA 
Lombardia).

Multivariate data analysis (Arain and Pheng 2006; Debic 
et al. 2014; Mouron et al. 2006; Reghunath et al. 2002) may 
help to quantify the influence that both types of variabilities 
(explained-when phenomenon is understood and unexplained 
when phenomenon is unknown) have on a system so that it 
can be better understood.

PC Analysis, essentially, is a one-sample technique applied 
to data with no groupings or divide among the observations. 
When the number of independent variables is large respect to 
the number of observations or the independent variables are 
highly correlated making unstable the estimates of repression 
coefficients, principal components are used to reduce the 
number of dimensions of the dataset. In this study, because 
PCA is strongly affected by missing values, parameters 
characterized by a large number of missing observations are 
discarded from the further analysis. As consequences, PCA 
was applied only on 13 water quality constituents represented 
into the Tab. 1. (Ca, Cl, specific conductance, Cr, Mg, 
Nitrates, pH, K, Na, Sulphates, Tetrachloroethene (PCE), 
Trichloroethene (TCE), Trichloromethane (TCM)).

N
mean median Std. Deviation min max

Valid Missing

Bicarbonate (mg/l) 1447 58328 262.66 256.00 78.84 2.50 662.00

Ca (mg/l) 40316 19459 73.34 72.00 48.70 0.50 4000.00

Cl (mg/l) 43773 16002 16.31 13.20 13.05 0.01 303.00

Specific conductance (Sm) 39468 20307 460.82 455.93 170.41 0.35 2896.00

Cr-VI (mg/l) 14794 44981 16.29 4.00 198.53 0.00 8022.90

Total-Cr (mg/l) 45552 14223 9.09 2.50 150.00 0.00 12300.00

Mg (mg/l) 39396 20379 15.85 16.00 5.72 0.50 249.00

NO3
-(mg/l) 46716 13059 22.75 21.30 14.43 0.01 190.06

DO (mg/l) 176 59599 12.82 8.16 11.37 0.16 68.40

K (mg/l) 38667 21108 0.91 0.50 0.71 0.10 40.00

Dry residue 36352 23423 318.01 313.14 106.00 0.25 909.00

Na (mg/l) 39259 20516 8.74 6.50 7.42 0.50 214.00

SO4
-2 (mg/l) 43915 15860 30.99 30.00 27.49 0.01 1363.00

PCE (mg/l) 44912 14863 14.87 3.00 310.32 0.00 37800.00

TCE (mg/l) 44569 15206 13.97 1.00 261.90 0.00 14000.00

TCM (mg/l) 43541 16234 3.55 0.50 88.30 0.00 17214.00

pH (-) 39603 20172 7.66 7.70 0.27 5.56 9.56

Temperature (°C) 4041 55734 14.92 14.90 1.51 7.70 26.60

Numerical transport model
CA identified the hotspots and a documental researches 

supplied the information about contamination sources and 
site history (Fig. 3b). These are the fundamental elements for 
a development of a numerical transport model. For simplicity, 
3 different scenarios (Fig. 2) have been considered as possible:

1. the hotspot and the contaminated site overlap (Fig. 2.1);
2. the hotspot is downgradient the contaminated site (Fig. 2.2);
3. no contaminated sites are associated with hotspot (Fig. 2.3).

In the first and second case, the plume simulation was 
possible by transport numerical model, whereas in the last 
case a particle tracking could help to identify areas for new 
investigations.

A deep documental research on contaminated sites and 
potential sources could supply many essential information 
to simulate the source in the numerical transport model, 
but it is not enough if the information is punctual and not 
related to the monitoring network nearby the source. A good 
monitoring network dataset, downgradient the source, is as 
much essential as the good site history knowledge to perform a 
realistic description of fate and transport of the contamination 
by numerical transport model. 

The three-dimensional finite-difference groundwater 
model (MODFLOW) of the Milan FUA was implemented 
to simulate the PCE contamination transport related to the 
sources identified through CA. The model quantitatively 
estimated the extension of the most important plumes 
(MT3DMS) in the FUA under steady- state conditions, 
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Tab. 2 - Hydrodinamic calibrated parameters for the transport model.

Tab. 2 - Parametri idrodinamici utilizzati per il modello di trasporto.

Fig. 2 - 1) hotspot and contaminated site overlapping. Sources were simulated into numerical transport model in order to delimit the plume extension 2) hotspot downgradient from the 
contaminated site and the plumes moved downgradient the source 3) no contaminated sites related to hotspots allowed only a particle tracking in order to identify the flow line interested 
by contaminant. 

Fig. 2 - 1) hotspot e sito contaminato coincidenti. Le sorgenti sono state simulate nel modello numerico di trasporto per delimitare l’estensione dei pennacchi  
2) hotspot a valle di siti contaminati. Il pennacchio si sviluppa a valle della sorgente 3) nessun sito contaminato coincide con gli hotspot. Solamente un tracciamento 
delle particelle è utile per determinare le linee di flusso interessate dalla contaminazione.

considering the groundwater contamination status in 2014. 
The horizontal domain of the model was defined by a  

20 m x 20 m grid and covered an area of about 1120 km2. The 
geometries of aquifers, provided by previous works (Carcano 
and Piccin 2002), were implemented in the model considering 
three layers: Layer 1 (Group A) with a 10-60 m average 
thickness, Layer 2 (aquitard) with a 2-10 m thickness and 
Layer 3 (Group B) with a 60-120 m average thickness. The 
available log-stratigraphies of the ARPA Lombardia database 
were used to calculate the equivalent hydraulic conductivities 
considering the thickness of each layer and considering 
specific hydraulic conductivity value (K) for each grain size 
class. The vertical anisotropy ratio was assumed equal to 
10% (Anderson and Woessner 1992). Computed values were 
initially assigned to the model and finally calibrated with an 
inverse procedure using pilot point technique (Doherty et al. 
2005). The regular grid of pilot point was supplemented with 
individual pilot points in correspondence with pumping tests 
(30) where the value of hydraulic conductivity could considered 
with a low uncertainty. For this reason, a narrow range were 
assigned to these special pilot points (+/-50% of pumping 
test value) whereas for the regular grid range was between 
10-5 and 10-2 m/s. BCs boundary condition was assigned 
considering the hydraulic head values collected in May 2014 
whereas internal boundary conditions of the model involved 
main streams (Lambro and Seveso), withdrawals (public and 
private) and recharge (three different zones were considered 
respectively urban (10-9 m/s), irrigative (2*10-8 m/s) and green  

(1.2*10-8 m/s). For more details (Alberti et al. 2016; ARPA 
Lombardia 2016).

Once the flow model was calibrated, a PCE transport 
model for only hotspots was developed with MT3DMS. The 
simulations were divided in six stress periods (each of a decade 
length, from ’50 to nowadays) in order to reconstruct the 
history of sources with constant concentration time variant 
conditions. The calibration procedure considered all available 
dataset from 2003 to 2014 to represent groundwater chemical 
status in 2014. It consisted on changing the parameters  
(Tab. 2), based on literature previous works (Gehlar et al. 
1992; Hill and Tiedeman 2007), that influence the advection-
dispersion equation of the PCE (i.e. dispersivity coefficient, 
distribution coefficient Kd and half-time life).

Dispersivity (m) foc (-) kd (m3/kg) t1/2 (year)
20 3 0.03 0.001 4.2*10-4 10

Diffuse contamination assessment: geostatistical 
maps and diffuse contamination values 

Once the plumes were modeled, from the chemical dataset 
were excluded those points affected by the plumes and whose 
quality was obviously not determined by diffuse pollution 
but from a PS contamination. Using kriging interpolation, 
different zones in FUA were identified with different levels of 
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diffuse contamination respectively in aquifer A and aquifer B. 
Combining maps with PCs - CA statistical results and 

referring to the two critical diffuse pollution zones with 
values higher than 1.1 mg/l, the summary statistics can be 
assumed as reference values for diffuse contamination (ARPA 
Lombardia 2016).

Here, two approaches were used:
1. B1: considering the dominant cluster obtained with PCA 

(herein with higher frequency in each different kriged 
zones of diffuse contamination), its summary statistics 
(50° percentile for yellow zone and 75°percentile for red 
zone) were used in order to assess the threshold diffuse 
contamination values for FUA;

2. B2: considering all clusters in each different kriged zones 
of diffuse contamination, an average value weighted 
on different clusters (50° percentile for yellow zone 
and 75°percentile for red zone) frequency provided the 
threshold diffuse contamination values for FUA.

Stochastic numerical modeling assessing diffuse 
contamination 

Diffuse contamination is clustered in a large area due to 
the presence of MPS which are unidentifiable and very small. 
Because of the uncertainty related to the exact position and 
strength of MPS, it is hard to implement a numerical model able 
to simulate the fate and transport of a diffused contamination. 
To overtake this problem, a numerical stochastic model (code 
MODFLOW/MT3DMS) was implemented in a pilot area 
located in the North-eastern part of the Milano FUA. The 
deterministic model was previously developed and calibrated 
in steady state condition (ARPA Lombardia 2015). The 
proposed methodology allowed to consider the uncertainties 
linked to the diffuse contamination sources (MPS) using a 
Monte Carlo (MC) procedure (Doherty 2014; Tonkin et al. 
2007; Tonkin and Doherty 2009). Several calibrated models 
were generated considering the effect of some parameters (K 
hydraulic conductivity heterogeneity and mass released from 
unknown sources) governing groundwater flow and transport. 

Two stochastic approaches were developed and compared:
1. particle backtracking (BT): through 400 MC realizations 

considering variability and uncertainty of K (within 
a range of plausible interval 10-5 -10-2 m/s). Using 
MODPATH (Pollock 1994), placing particle starting 
points where a PCE measurement diffuse concentration 
is available, it was possible to highlight, in terms of 
frequency, the cells crossed by a high number of particles, 
i.e. the cells that most probably can host a MPS;

2. clustered MPS: through 100 MC realizations considering 
variability of contaminant mass released into the shallow 
aquifer (computed as a product of concentration and 
Darcy’s flow is within a range of 10-2 – 1 mg/s). Using 
MT3DMS, for each domain sector, it was possible to assess 
in a probabilistic way, the MPS contaminant distribution 
and the mass releases frequency (Alberti et al. 2017).

From many different realizations all calibrated within NSMC 
(Null Space Monte Carlo suite in PEST), it was therefore 

possible to provide results in terms of frequency of occurrence 
that identified areas of high probability to find MPS.

Results and discussion
Statistical results
Statistical tool provided two main results:
•	 CA allowed to separate the PS from the MPS (Fig. 3a, on 

the next page.);
•	 PCA/FA transformed the dataset containing the 13 vari-

ables (analytical constituents in Tab. 1) interrelated or 
correlated to various degrees, to a new dataset containing 
5 new orthogonal, uncorrelated variables called principal 
components (PCs).

Factors loadings are the standardized regression coefficients 
of the multiple linear regression characterizing the 
components (absolute loading values higher than 0.6 are 
significant and are identical to the correlation coefficients). 
PCE and TCE are the variables with the highest correlation 
within the third component (0.85) whereas Ca, Mg, nitrates 
and pH are the variables with the strongest correlation within 
the second component. Finally the first component, contain 
higher correlations (0.75-0.80) between monovalent ions (K, 
Na, Cl, SO4

2-).
A new CA was applied to multivariate set of data 

considering the 5 PCs as variables. Five clusters (3, 5, 6, 7, 13) 
were identified as representative of diffuse contamination as 
shown in Fig. 4 as they represent an homogeneous sub-set of 
database which have the same multi-parameter characteristics 
(i.e. they are the most populated clusters and they have an 
average PCE concentration value next to zero).

Fig. 4 - a) Clusters identified with cluster analysis after PCA. Ten clusters are representa-
tives of hotspots (samples with high concentration are less than 1%). Only 5 clusters (violet) 
are representatives of a diffuse contamination b) characteristics of mean PCE-TCE centroids 
cluster obtained through the multivariate k-means (ARPA LOMBARDIA 2016). 

Fig. 4 - a) Cluster individuati dopo la PCA. 10 cluster sono rappresentativi di 
sorgenti puntuali (i campioni con alte concentrazioni sono minori del 1%). Solo 5 
cluster sono rappresentativi invece di una contaminazione diffusa b) valore medio 
dei centroidi dei cluster diffusi PCE-TCE ottenuti mediante l’analisi multivariata 
(ARPA LOMBARDIA 2016).
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Fig. 3 - a) Box plot in a logarithmic scale of the 45602 PCE measurements (μg/l) subdivided into 15 clusters (k-means). The cluster 1, the highest populated ones, refers to PCE 
values lower than the PCE values of the other clusters. This could be considered as representative of the diffuse PCE contamination whereas the others 14 may be possibly attributed to 
hotspots b) the clusters found with cluster analysis are compared with potential contaminant sources identified by documental research (ARPA LOMBARDIA 2016). 

Fig. 3 - a) Box-plot in scala logaritmica dei 45602 valori misurati di PCE (mg/l) suddivisi in 15 cluster (k-means), Il cluster 1 che è il più popoloso si riferisce ai 
valori di PCE inferiori a tutti gli altri e può essere considerato come rappresentativo dell’inquinamento diffuso da PCE mentre i restanti possono essere attribuiti 
a sorgenti puntuali b) confronto dei cluster con le sorgenti potenziali di contaminazione identificati mediante ricerca documentale (ARPA LOMBARDIA 2016).

Fig. 5 - Observed vs computed head for targets in shallow aquifer (blue dots) and 
semiconfined one (orange dots). The residual standard deviations are respectively about 
1.2 m and 2.2 m.
Fig. 5 - Retta di calibrazione tra valori osservati e valori simulati per acquifero 
superficiale (punti blu) e acquifero semiconfinato (punti arancioni). I residui della 
dev.st sono rispettivamente 1.2 m and 2.2 m..

Modelling results
The deterministic numerical flow model calibrated showed 

a good fit to measurements (Fig. 5) with an absolute residual 
mean (ARM) of the hydraulic heads less than 1 meter for 
the shallow aquifer (blue dots) and less than 2 meters for the 
semiconfined one (orange dots). 

Considering for simplicity a pseudo-steady state flow model 

and assuming that the effect of change of flow lines have a 
little effect on the plumes, the transport model once calibrated 
with parameters showed in Tab.1, have simulated plumes for 
those hotspots obtained with CA (Fig. 6a plumes for shallow 
aquifer and Fig. 6b plumes for semiconfined aquifer).

Furthermore, the transport model allowed to:
•	 study the plumes (Fig. 6) influence on quality status of 

downgradient areas (i.e. the influence on the water supply 
wells in Milan); 

•	 find monitoring points not interested by the presence of 
plumes and considered related to a diffuse contamination.

Maps of diffuse contamination
Results of the kriging are shown in Fig. 7. Two critical 

kriged zones for diffuse pollution were identified (Fig. 7): 
the yellow zone is between the Maximum Contaminant 
Level of PCE (1.1 mg/l) and the drinkable water threshold 
(10 mg/l) whereas the red zone is over 10 mg/l. Considering 
the 2 different approaches listed in the materials and method 
section, the threshold values for diffuse contamination in 
FUA is different:
•	 in yellow zone: the threshold values can vary from 5 (B2) 

to 8 (B1) mg/l in shallow aquifer, from 6 (B2) to 7.5 (B1) 
mg/l in semiconfined aquifer;

•	 in red zone: the threshold values can vary from 8 (B2) to 
12 (B1) mg/l in shallow aquifer, from 15 (B1) to 18 (B2) 
mg/l in semiconfined aquifer.
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Fig. 6 - PCE transport model results in a) Group A (Layer 1) and b) Group B (Layer 3).

Fig. 6 - Risultati del modello numerico di trasporto di PCE nel a) Gruppo Acquifero A (Layer 1) e b) Gruppo Acquifero B (Layer 3).

Fig. 7 - Kriging interpolation applied to PCE median concentration values (2010-2014) for a) Group A and b) Group B. Light blue zone is under Law Limit (<1.1 ug/l) whereas 
red zone exceeds the 31/2001 drinking water standard of 10 ug/l (ARPA LOMBARDIA 2016). 

Fig. 7 - Interpolazione kriging applicata ai valori di concentrazione mediana di PCE (2010-2014) per a) Gruppo A e b) Gruppo B. La zona azzurra è al di sotto 
della CSC (<1.1 ug/l) mentre la zona rossa supera il limite delle acque potabili (31/2001, 10 ug/l.) (ARPA LOMBARDIA 2016).
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Stochastic numerical modelling results
The BT and clustered MPS methodologies results were 

compared in order to collect information about those areas 
that most probably could be responsible of the MPS (circled 
into the Fig. 8). In most of the cases, the identified areas 
match. Some improvements are necessary, mostly in areas 
located close to the boundary conditions. 

About computational aspects, it is possible to state that, 
particle BT is faster than the clustered MPS approach. 
Moreover, the latter ones require several information for the 
inverse problem implementation.

Conclusions
In Milan FUA, which is one of the most populated 

and industrialized area in Europe, chlorinated solvents 
contamination is affecting groundwater quality since 50s 
because of the presence of highly industrialized zones. The 
work presented in this paper gives a contribution to the 
identification and distinction of PS and MPS contamination 
and presents the main results of the study related to the PCE 
diffuse pollution:
•	 The statistical analysis allowed to distinguish PS from 

MPS and led to define the threshold values (Approach 
A and B) of diffuse contamination for different zones 
mapped through geostatistical analysis in Milano FUA; 

•	 The modelling phase defined the extension of PCE 
plumes both for shallow and semiconfined Aquifer with 
reference to 2014 contamination data;

Fig. 8 - Comparison between two stochastic procedure with NSMC a) back-tracking particle with k-uncertainties and b) MPS with release mass uncertainties

Fig. 8 -Confronto tra due metodi stocastici con NSMC a) tracciamento delle particelle all’indietro considerando le incertezze della permeabilità k e b) MPS con 
incertezza della massa rilasciata dalle sorgenti.

•	 The stochastic analysis led to define the areas that most 
probably host MPS responsible for the PCE diffuse 
contamination (in the upper and central part of the pilot 
model).

These results become essential for regional administration 
for identifying the zones interested by PCE contamination. 

More in detail, contamination distribution maps represent 
the base both for the Public Authorities decision-making 
process and for the development of strategical plans for 
assessing the contamination problem. The results of this 
study turn out to be useful for actions as: 
•	 to operate against the diffuse contamination with a 

management plan (i.e. monitoring network improvement 
and cooperation between Public Authorities);

•	 to implement a risk-analysis study in order to evaluate, 
and eventually exclude, possible effects on human health 
of vapours from the un-saturated zone ;

•	 to evaluate the evolution of the diffuse contamination 
in short-term scenarios (i.e. a new dedicated network to 
monitor PCE diffuse contamination);

•	 to drive Public Authorities to focus on those areas where 
the intervention seems to be more urgent.
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